dc.contributor.author | Kortelainen, Juha | |
dc.contributor.author | Mendez, Martin O. | |
dc.contributor.author | Nistico, Domenico | |
dc.contributor.author | Arce-Santana, Edgar | |
dc.contributor.author | Cerutti, Sergio | |
dc.contributor.author | Migliorini, Matteo | |
dc.contributor.author | Bianchi, Anna M. | |
dc.date.accessioned | 2022-02-18T11:12:55Z | |
dc.date.available | 2022-02-18T11:12:55Z | |
dc.identifier.citation | Migliorini M., Bianchi A. M. , Nistico D., Kortelainen J., Arce-Santana E., Cerutti S., Mendez M. O. , "Automatic sleep staging based on ballistocardiographic signals recorded through bed sensors", 32nd Annual International Conference of the IEEE Engineering-in-Medicine-and-Biology-Society (EMBC 10), Buenos Aires, Arjantin, 30 Ağustos - 04 Eylül 2010, ss.3273-3276 | |
dc.identifier.other | vv_1032021 | |
dc.identifier.other | av_de6b51d2-0da8-4ba2-a806-bf580b9595bd | |
dc.identifier.uri | http://hdl.handle.net/20.500.12627/180670 | |
dc.identifier.uri | https://doi.org/10.1109/iembs.2010.5627217 | |
dc.description.abstract | This study presents different methods for automatic sleep classification based on heart rate variability (HRV), respiration and movement signals recorded through bed sensors. Two methods for feature extraction have been implemented: time variant-autoregressive model (TVAM) and wavelet discrete transform (WDT); the obtained features are fed into two classifiers: Quadratic (QD) and Linear (LD) discriminant for staging sleep in REM, nonREM and WAKE periods. The performances of all the possible combinations of feature extractors and classifiers are compared in terms of accuracy and kappa index, using clinica polysomographyc evaluation as golden standard. 17 recordings from healthy subjects, including also polisomnography, were used to train and test the algorithms. When automatic classification is compared. QD-TVAM algorithm achieved a total accuracy of 76.81 +/- 7.51 % and kappa index of 0.55 +/- 0.10, while LD-WDT achieved a total accuracy of 79 +/- 10% and kappa index of 0.51 +/- 0.17. The results suggest that a good sleep evaluation can be achieved through non-conventional recording systems that could be used outside sleep centers. | |
dc.language.iso | eng | |
dc.subject | Biyomedikal Mühendisliği | |
dc.subject | Mühendislik ve Teknoloji | |
dc.subject | Signal Processing | |
dc.subject | General Engineering | |
dc.subject | Engineering (miscellaneous) | |
dc.subject | Biomedical Engineering | |
dc.subject | Electrical and Electronic Engineering | |
dc.subject | Bioengineering | |
dc.subject | Bilgi Sistemleri, Haberleşme ve Kontrol Mühendisliği | |
dc.subject | Physical Sciences | |
dc.subject | Sinyal İşleme | |
dc.subject | MÜHENDİSLİK, ELEKTRİK VE ELEKTRONİK | |
dc.subject | Mühendislik, Bilişim ve Teknoloji (ENG) | |
dc.subject | Mühendislik | |
dc.subject | MÜHENDİSLİK, BİYOMEDİKSEL | |
dc.title | Automatic sleep staging based on ballistocardiographic signals recorded through bed sensors | |
dc.type | Bildiri | |
dc.contributor.department | Polytechnic University of Milan , , | |
dc.contributor.firstauthorID | 3377466 | |