Basit öğe kaydını göster

dc.contributor.authorRayaluru, Akshay
dc.contributor.authorBandela, Surekha Reddy
dc.contributor.authorKumar, T. Kishore
dc.date.accessioned2022-02-18T11:25:48Z
dc.date.available2022-02-18T11:25:48Z
dc.identifier.citationRayaluru A., Bandela S. R. , Kumar T. K. , "Speech Emotion Recognition using Feature Selection with Adaptive Structure Learning", 5th IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS), Rourkela, Hindistan, 16 - 18 Eylül 2019, ss.233-236
dc.identifier.othervv_1032021
dc.identifier.otherav_f768ec69-ea7f-49d3-b69f-ef764c7d5dae
dc.identifier.urihttp://hdl.handle.net/20.500.12627/181183
dc.identifier.urihttps://doi.org/10.1109/ises47678.2019.00059
dc.description.abstractSpeech Emotion Recognition(SER) has gained a lot of interest in recent times. The combination of different speech features improves the accuracy of the SER system. Whereas, this results in an increase of the time taken by the classifier to train the huge feature set. Also, there are some of the features that could not be useful for emotion recognition which leads to the decrease in the recognition accuracy. Therefore, in order to surmount this disadvantage, feature selection algorithms can be used in order to choose the most prominent features that could contribute highly for classification of the emotions efficiently. In this paper, a Feature Selection with Adaptive Structure Learning (FSASL) is used for selecting the appropriate features for SER. In the proposed SER system, the 1582 INTERSPEECH 2010 Paralinguistic features are extracted from the speech signal and the FSASL Feature Selection algorithm is used for selecting the best features from the huge feature set. The SVM and k-NN classifiers with 5-fold cross-validation scheme is used for classifying the emotions. EMO-DB, Berlin German database is used in this work and the Classification accuracy performance metric are considered for the evaluation of the proposed SER system. The results emphasize that the classification accuracy of the proposed SER system is improved remarkably upon using the FSASL algorithm as compared to the baseline as well as the existing SER systems.
dc.language.isoeng
dc.subjectGeneral Engineering
dc.subjectArtificial Intelligence
dc.subjectComputers in Earth Sciences
dc.subjectComputer Graphics and Computer-Aided Design
dc.subjectGeneral Computer Science
dc.subjectEngineering (miscellaneous)
dc.subjectElectrical and Electronic Engineering
dc.subjectComputer Science (miscellaneous)
dc.subjectComputer Vision and Pattern Recognition
dc.subjectComputer Science Applications
dc.subjectPhysical Sciences
dc.subjectBİLGİSAYAR BİLİMİ, YAPAY ZEKA
dc.subjectBilgisayar Bilimi
dc.subjectMühendislik, Bilişim ve Teknoloji (ENG)
dc.subjectBİLGİSAYAR BİLİMİ, İNTERDİSİPLİNER UYGULAMALAR
dc.subjectMÜHENDİSLİK, ELEKTRİK VE ELEKTRONİK
dc.subjectMühendislik
dc.subjectBilgi Sistemleri, Haberleşme ve Kontrol Mühendisliği
dc.subjectSinyal İşleme
dc.subjectBilgisayar Bilimleri
dc.subjectAlgoritmalar
dc.subjectBilgisayar Grafiği
dc.subjectMühendislik ve Teknoloji
dc.subjectSignal Processing
dc.titleSpeech Emotion Recognition using Feature Selection with Adaptive Structure Learning
dc.typeBildiri
dc.contributor.departmentNIT Warangal , ,
dc.contributor.firstauthorID3386920


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster