Basit öğe kaydını göster

dc.contributor.authorSEVGEN, SELÇUK
dc.contributor.authorSahin, Selin
dc.contributor.authorŞAMLI, RÜYA
dc.date.accessioned2022-07-04T13:18:31Z
dc.date.available2022-07-04T13:18:31Z
dc.identifier.citationSEVGEN S., Sahin S., ŞAMLI R., "Modeling of sunflower oil treated with lemon balm (Melissa officinalis): Artificial neural networks versus multiple linear regression", JOURNAL OF FOOD PROCESSING AND PRESERVATION, 2022
dc.identifier.issn0145-8892
dc.identifier.otherav_43467972-5c61-4b16-b54d-7931b83f1741
dc.identifier.othervv_1032021
dc.identifier.urihttp://hdl.handle.net/20.500.12627/182505
dc.identifier.urihttps://doi.org/10.1111/jfpp.16650
dc.description.abstractThis study aimed to develop, evaluate, and compare the performance of artificial neural networks and multiple linear regression models in the estimation of phenolic profile of sunflower oil enriched by lemon balm. Total phenolic material in addition to the quality parameters (induction time and antioxidant activity) of the treated oil was compared to those of the pure sunflower oil. The oxidative stability of the product was increased by almost 7% in terms of induction time, while the phenolic profile was increased by almost 2.5 times. Moreover, the antioxidant activity of sunflower oil was enhanced by similar to 5 times over the pure oil. The values of artificial neural networks and multiple linear regression were calculated as: error rates 0.01% and 8.09%; root-mean-square error values 0.45, and 4.36; R-2 values 0.9958 and 0.6183, respectively.
dc.language.isoeng
dc.subjectZiraat
dc.subjectGıda Mühendisliği
dc.subjectMühendislik ve Teknoloji
dc.subjectFood Science
dc.subjectLife Sciences
dc.subjectTarım ve Çevre Bilimleri (AGE)
dc.subjectTarımsal Bilimler
dc.subjectTarım Bilimleri
dc.subjectGIDA BİLİMİ VE TEKNOLOJİSİ
dc.titleModeling of sunflower oil treated with lemon balm (Melissa officinalis): Artificial neural networks versus multiple linear regression
dc.typeMakale
dc.relation.journalJOURNAL OF FOOD PROCESSING AND PRESERVATION
dc.contributor.departmentİstanbul Üniversitesi-Cerrahpaşa , Mühendislik Fakültesi , Bilgisayar Mühendisliği Bölümü
dc.contributor.firstauthorID3422134


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster