Basit öğe kaydını göster

dc.contributor.authorŞen, Ayşe
dc.contributor.authorSirkeci, Merve
dc.contributor.authorÜnlü, Mehmet Burçin
dc.contributor.authorParlatan, Ugur
dc.contributor.authorGüzelçimen, Feyza
dc.contributor.authorKecoglu, Ibrahim
dc.date.accessioned2022-07-04T14:44:01Z
dc.date.available2022-07-04T14:44:01Z
dc.date.issued2022
dc.identifier.citationKecoglu I., Sirkeci M., Ünlü M. B. , Şen A., Parlatan U., Güzelçimen F., "Quantification of salt stress in wheat leaves by Raman spectroscopy and machine learning", SCIENTIFIC REPORTS, cilt.12, sa.7197, ss.1-10, 2022
dc.identifier.issn2045-2322
dc.identifier.othervv_1032021
dc.identifier.otherav_89b0a9cc-d808-4a83-b307-53a422baea6a
dc.identifier.urihttp://hdl.handle.net/20.500.12627/183634
dc.identifier.urihttps://doi.org/10.1038/s41598-022-10767-y
dc.identifier.urihttps://avesis.istanbul.edu.tr/api/publication/89b0a9cc-d808-4a83-b307-53a422baea6a/file
dc.description.abstractThe salinity level of the growing medium has diverse effects on the development of plants, including both physical and biochemical changes. To determine the salt stress level of a plant endures, one can measure these structural and chemical changes. Raman spectroscopy and biochemical analysis are some of the most common techniques in the literature. Here, we present a combination of machine learning and Raman spectroscopy with which we can both find out the biochemical change that occurs while the medium salt concentration changes and predict the level of salt stress a wheat sample experiences accurately using our trained regression models. In addition, by applying different machine learning algorithms, we compare the level of success for different algorithms and determine the best method to use in this application. Production units can take actions based on the quantitative information they get from the trained machine learning models related to salt stress, which can potentially increase efficiency and avoid the loss of crops.
dc.language.isoeng
dc.subjectMultidisciplinary
dc.subjectBiotechnology
dc.subjectApplied Microbiology and Biotechnology
dc.subjectMolecular Medicine
dc.subjectLife Sciences
dc.subjectTemel Bilimler (SCI)
dc.subjectBiyoteknoloji
dc.subjectYaşam Bilimleri
dc.subjectBİYOTEKNOLOJİ VE UYGULAMALI MİKROBİYOLOJİ
dc.subjectÇOK DİSİPLİNLİ BİLİMLER
dc.subjectMikrobiyoloji
dc.subjectDoğa Bilimleri Genel
dc.subjectYaşam Bilimleri (LIFE)
dc.subjectTemel Bilimler
dc.titleQuantification of salt stress in wheat leaves by Raman spectroscopy and machine learning
dc.typeMakale
dc.relation.journalSCIENTIFIC REPORTS
dc.contributor.departmentBoğaziçi Üniversitesi , ,
dc.identifier.volume12
dc.identifier.issue7197
dc.identifier.startpage1
dc.identifier.endpage10
dc.contributor.firstauthorID3416284


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster