dc.contributor.author | Şen, Ayşe | |
dc.contributor.author | Sirkeci, Merve | |
dc.contributor.author | Ünlü, Mehmet Burçin | |
dc.contributor.author | Parlatan, Ugur | |
dc.contributor.author | Güzelçimen, Feyza | |
dc.contributor.author | Kecoglu, Ibrahim | |
dc.date.accessioned | 2022-07-04T14:44:01Z | |
dc.date.available | 2022-07-04T14:44:01Z | |
dc.date.issued | 2022 | |
dc.identifier.citation | Kecoglu I., Sirkeci M., Ünlü M. B. , Şen A., Parlatan U., Güzelçimen F., "Quantification of salt stress in wheat leaves by Raman spectroscopy and machine learning", SCIENTIFIC REPORTS, cilt.12, sa.7197, ss.1-10, 2022 | |
dc.identifier.issn | 2045-2322 | |
dc.identifier.other | vv_1032021 | |
dc.identifier.other | av_89b0a9cc-d808-4a83-b307-53a422baea6a | |
dc.identifier.uri | http://hdl.handle.net/20.500.12627/183634 | |
dc.identifier.uri | https://doi.org/10.1038/s41598-022-10767-y | |
dc.identifier.uri | https://avesis.istanbul.edu.tr/api/publication/89b0a9cc-d808-4a83-b307-53a422baea6a/file | |
dc.description.abstract | The salinity level of the growing medium has diverse effects on the development of plants, including both physical and biochemical changes. To determine the salt stress level of a plant endures, one can measure these structural and chemical changes. Raman spectroscopy and biochemical analysis are some of the most common techniques in the literature. Here, we present a combination of machine learning and Raman spectroscopy with which we can both find out the biochemical change that occurs while the medium salt concentration changes and predict the level of salt stress a wheat sample experiences accurately using our trained regression models. In addition, by applying different machine learning algorithms, we compare the level of success for different algorithms and determine the best method to use in this application. Production units can take actions based on the quantitative information they get from the trained machine learning models related to salt stress, which can potentially increase efficiency and avoid the loss of crops. | |
dc.language.iso | eng | |
dc.subject | Multidisciplinary | |
dc.subject | Biotechnology | |
dc.subject | Applied Microbiology and Biotechnology | |
dc.subject | Molecular Medicine | |
dc.subject | Life Sciences | |
dc.subject | Temel Bilimler (SCI) | |
dc.subject | Biyoteknoloji | |
dc.subject | Yaşam Bilimleri | |
dc.subject | BİYOTEKNOLOJİ VE UYGULAMALI MİKROBİYOLOJİ | |
dc.subject | ÇOK DİSİPLİNLİ BİLİMLER | |
dc.subject | Mikrobiyoloji | |
dc.subject | Doğa Bilimleri Genel | |
dc.subject | Yaşam Bilimleri (LIFE) | |
dc.subject | Temel Bilimler | |
dc.title | Quantification of salt stress in wheat leaves by Raman spectroscopy and machine learning | |
dc.type | Makale | |
dc.relation.journal | SCIENTIFIC REPORTS | |
dc.contributor.department | Boğaziçi Üniversitesi , , | |
dc.identifier.volume | 12 | |
dc.identifier.issue | 7197 | |
dc.identifier.startpage | 1 | |
dc.identifier.endpage | 10 | |
dc.contributor.firstauthorID | 3416284 | |