dc.contributor.author | Yanikoglu, Berrin | |
dc.contributor.author | Ahmed, Sara Atito Ali | |
dc.contributor.author | Yavuz, Mehmet Can | |
dc.contributor.author | Sen, Mehmet Umut | |
dc.contributor.author | Gulsen, Faith | |
dc.contributor.author | TUTAR, ONUR | |
dc.contributor.author | KORKMAZER, BORA | |
dc.contributor.author | SAMANCI, CESUR | |
dc.contributor.author | Sirolu, Sabri | |
dc.contributor.author | Hamid, Rauf | |
dc.contributor.author | ERYÜREKLİ, ALİ ERGUN | |
dc.contributor.author | Mammadov, Toghrul | |
dc.date.accessioned | 2022-07-04T15:05:36Z | |
dc.date.available | 2022-07-04T15:05:36Z | |
dc.identifier.citation | Ahmed S. A. A. , Yavuz M. C. , Sen M. U. , Gulsen F., TUTAR O., KORKMAZER B., SAMANCI C., Sirolu S., Hamid R., ERYÜREKLİ A. E. , et al., "Comparison and ensemble of 2D and 3D approaches for COVID-19 detection in CT images", NEUROCOMPUTING, cilt.488, ss.457-469, 2022 | |
dc.identifier.issn | 0925-2312 | |
dc.identifier.other | av_9dd4eb87-aab5-4c5e-bcfe-45678fbb79a2 | |
dc.identifier.other | vv_1032021 | |
dc.identifier.uri | http://hdl.handle.net/20.500.12627/183949 | |
dc.identifier.uri | https://doi.org/10.1016/j.neucom.2022.02.018 | |
dc.description.abstract | Detecting COVID-19 in computed tomography (CT) or radiography images has been proposed as a supplement to the RT-PCR test. We compare slice-based (2D) and volume-based (3D) approaches to this problem and propose a deep learning ensemble, called IST-CovNet, combining the best 2D and 3D systems with novel preprocessing and attention modules and the use of a bidirectional Long Short-Term Memory model for combining slice-level decisions. The proposed ensemble obtains 90.80% accuracy and 0.95 AUC score overall on the newly collected IST-C dataset in detecting COVID-19 among normal controls and other types of lung pathologies; and 93.69% accuracy and 0.99 AUC score on the publicly available MosMedData dataset that consists of COVID-19 scans and normal controls only. The system also obtains state-of-art results (90.16% accuracy and 0.94 AUC) on the COVID-CT-MD dataset which is only used for testing. The system is deployed at Istanbul University Cerrahpas & DBLBOND;a School of Medicine where it is used to automatically screen CT scans of patients, while waiting for RT-PCR tests or radiologist evaluation.(C) 2022 Elsevier B.V. All rights reserved. | |
dc.language.iso | eng | |
dc.subject | Computer Science (miscellaneous) | |
dc.subject | BİLGİSAYAR BİLİMİ, YAPAY ZEKA | |
dc.subject | Bilgisayar Bilimi | |
dc.subject | Mühendislik, Bilişim ve Teknoloji (ENG) | |
dc.subject | Bilgisayar Bilimleri | |
dc.subject | Algoritmalar | |
dc.subject | Mühendislik ve Teknoloji | |
dc.subject | Artificial Intelligence | |
dc.subject | General Computer Science | |
dc.subject | Physical Sciences | |
dc.subject | Computer Vision and Pattern Recognition | |
dc.subject | Computer Science Applications | |
dc.title | Comparison and ensemble of 2D and 3D approaches for COVID-19 detection in CT images | |
dc.type | Makale | |
dc.relation.journal | NEUROCOMPUTING | |
dc.contributor.department | Sabancı Üniversitesi , , | |
dc.identifier.volume | 488 | |
dc.identifier.startpage | 457 | |
dc.identifier.endpage | 469 | |
dc.contributor.firstauthorID | 3418851 | |