Basit öğe kaydını göster

dc.contributor.authorYanikoglu, Berrin
dc.contributor.authorAhmed, Sara Atito Ali
dc.contributor.authorYavuz, Mehmet Can
dc.contributor.authorSen, Mehmet Umut
dc.contributor.authorGulsen, Faith
dc.contributor.authorTUTAR, ONUR
dc.contributor.authorKORKMAZER, BORA
dc.contributor.authorSAMANCI, CESUR
dc.contributor.authorSirolu, Sabri
dc.contributor.authorHamid, Rauf
dc.contributor.authorERYÜREKLİ, ALİ ERGUN
dc.contributor.authorMammadov, Toghrul
dc.date.accessioned2022-07-04T15:05:36Z
dc.date.available2022-07-04T15:05:36Z
dc.identifier.citationAhmed S. A. A. , Yavuz M. C. , Sen M. U. , Gulsen F., TUTAR O., KORKMAZER B., SAMANCI C., Sirolu S., Hamid R., ERYÜREKLİ A. E. , et al., "Comparison and ensemble of 2D and 3D approaches for COVID-19 detection in CT images", NEUROCOMPUTING, cilt.488, ss.457-469, 2022
dc.identifier.issn0925-2312
dc.identifier.otherav_9dd4eb87-aab5-4c5e-bcfe-45678fbb79a2
dc.identifier.othervv_1032021
dc.identifier.urihttp://hdl.handle.net/20.500.12627/183949
dc.identifier.urihttps://doi.org/10.1016/j.neucom.2022.02.018
dc.description.abstractDetecting COVID-19 in computed tomography (CT) or radiography images has been proposed as a supplement to the RT-PCR test. We compare slice-based (2D) and volume-based (3D) approaches to this problem and propose a deep learning ensemble, called IST-CovNet, combining the best 2D and 3D systems with novel preprocessing and attention modules and the use of a bidirectional Long Short-Term Memory model for combining slice-level decisions. The proposed ensemble obtains 90.80% accuracy and 0.95 AUC score overall on the newly collected IST-C dataset in detecting COVID-19 among normal controls and other types of lung pathologies; and 93.69% accuracy and 0.99 AUC score on the publicly available MosMedData dataset that consists of COVID-19 scans and normal controls only. The system also obtains state-of-art results (90.16% accuracy and 0.94 AUC) on the COVID-CT-MD dataset which is only used for testing. The system is deployed at Istanbul University Cerrahpas & DBLBOND;a School of Medicine where it is used to automatically screen CT scans of patients, while waiting for RT-PCR tests or radiologist evaluation.(C) 2022 Elsevier B.V. All rights reserved.
dc.language.isoeng
dc.subjectComputer Science (miscellaneous)
dc.subjectBİLGİSAYAR BİLİMİ, YAPAY ZEKA
dc.subjectBilgisayar Bilimi
dc.subjectMühendislik, Bilişim ve Teknoloji (ENG)
dc.subjectBilgisayar Bilimleri
dc.subjectAlgoritmalar
dc.subjectMühendislik ve Teknoloji
dc.subjectArtificial Intelligence
dc.subjectGeneral Computer Science
dc.subjectPhysical Sciences
dc.subjectComputer Vision and Pattern Recognition
dc.subjectComputer Science Applications
dc.titleComparison and ensemble of 2D and 3D approaches for COVID-19 detection in CT images
dc.typeMakale
dc.relation.journalNEUROCOMPUTING
dc.contributor.departmentSabancı Üniversitesi , ,
dc.identifier.volume488
dc.identifier.startpage457
dc.identifier.endpage469
dc.contributor.firstauthorID3418851


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster