dc.contributor.author | Ucar, Nese | |
dc.contributor.author | Bektas, Sibel | |
dc.contributor.author | Kocak, Burak | |
dc.contributor.author | Akan, Yesim Namdar | |
dc.contributor.author | Yildirim, Emine | |
dc.contributor.author | KAYADİBİ, YASEMİN | |
dc.date.accessioned | 2022-07-04T16:19:34Z | |
dc.date.available | 2022-07-04T16:19:34Z | |
dc.identifier.citation | KAYADİBİ Y., Kocak B., Ucar N., Akan Y. N. , Yildirim E., Bektas S., "MRI Radiomics of Breast Cancer: Machine Learning-Based Prediction of Lymphovascular Invasion Status", ACADEMIC RADIOLOGY, cilt.29, 2022 | |
dc.identifier.issn | 1076-6332 | |
dc.identifier.other | vv_1032021 | |
dc.identifier.other | av_df3ed40d-ca5e-4cc9-87ef-279569f51b59 | |
dc.identifier.uri | http://hdl.handle.net/20.500.12627/185023 | |
dc.identifier.uri | https://doi.org/10.1016/j.acra.2021.10.026 | |
dc.description.abstract | Rationale and Objectives: In patients with breast cancer (BC), lymphovascular invasion (LVI) status is considered an important prognostic factor. We aimed to develop machine learning (ML)-based radiomics models for the prediction of LVI status in patients with BC, using preoperative MRI images. | |
dc.language.iso | eng | |
dc.subject | Radiology, Nuclear Medicine and Imaging | |
dc.subject | Radiological and Ultrasound Technology | |
dc.subject | Health Sciences | |
dc.subject | Dahili Tıp Bilimleri | |
dc.subject | Nükleer Tıp | |
dc.subject | Sağlık Bilimleri | |
dc.subject | Tıp | |
dc.subject | Klinik Tıp (MED) | |
dc.subject | Klinik Tıp | |
dc.subject | RADYOLOJİ, NÜKLEER TIP ve MEDİKAL GÖRÜNTÜLEME | |
dc.title | MRI Radiomics of Breast Cancer: Machine Learning-Based Prediction of Lymphovascular Invasion Status | |
dc.type | Makale | |
dc.relation.journal | ACADEMIC RADIOLOGY | |
dc.contributor.department | İstanbul Üniversitesi-Cerrahpaşa , Cerrahpaşa Tıp Fakültesi , Dahili Tıp Bilimleri Bölümü | |
dc.identifier.volume | 29 | |
dc.contributor.firstauthorID | 3395287 | |