Discrimination between non-functioning pituitary adenomas and hypophysitis using machine learning methods based on magnetic resonance imaging-derived texture features
Author
DAĞDELEN, SELÇUK
KADIOĞLU, PINAR
Oguz, Kader Karli
Erbas, Tomris
KIZILKILIÇ, OSMAN
Sahin, Serdar
YILDIZ, GÖKÇEN
Oguz, Seda Hanife
CIVAN, ORKUN
ÇİÇEK, EBRU
Durcan, Emre
ÇOMUNOĞLU, NİL
ÖZKAYA, HANDE MEFKURE
ÖZ, AYŞİM BÜGE
Soylemezoglu, Figen
Metadata
Show full item recordAbstract
Purpose Hypophysitis is a heterogeneous condition that includes inflammation of the pituitary gland and infundibulum, and it can cause symptoms related to mass effects and hormonal deficiencies. We aimed to evaluate the potential role of machine learning methods in differentiating hypophysitis from non-functioning pituitary adenomas. Methods The radiomic parameters obtained from T1A-C images were used. Among the radiomic parameters, parameters capable of distinguishing between hypophysitis and non-functioning pituitary adenomas were selected. In order to avoid the effects of confounding factors and to improve the performance of the classifiers, parameters with high correlation with each other were eliminated. Machine learning algorithms were performed with the combination of gray-level run-length matrix-low gray level run emphasis, gray-level co-occurrence matrix-correlation, and gray-level co-occurrence entropy. Results A total of 34 patients were included, 17 of whom had hypophysitis and 17 had non-functioning pituitary adenomas. Among the 38 radiomics parameters obtained from post-contrast T1-weighted images, 10 tissue features that could differentiate the lesions were selected. Machine learning algorithms were performed using three selected parameters; gray level run length matrix-low gray level run emphasis, gray-level co-occurrence matrix-correlation, and gray level co-occurrence entropy. Error matrices were calculated by using the machine learning algorithm and it was seen that support vector machines showed the best performance in distinguishing the two lesion types. Conclusions Our analysis reported that support vector machines showed the best performance in distinguishing hypophysitis from non-functioning pituitary adenomas, emphasizing the importance of machine learning in differentiating the two lesions.
Collections
- Makale [92796]