Basit öğe kaydını göster

dc.contributor.authorCakiroglu, Celal
dc.contributor.authorGeem, Zong Woo
dc.contributor.authorKim, Sanghun
dc.contributor.authorBEKDAŞ, GEBRAİL
dc.date.accessioned2022-12-27T09:39:06Z
dc.date.available2022-12-27T09:39:06Z
dc.date.issued2022
dc.identifier.citationBEKDAŞ G., Cakiroglu C., Kim S., Geem Z. W., "Optimal Dimensioning of Retaining Walls Using Explainable Ensemble Learning Algorithms", MATERIALS, cilt.15, sa.14, 2022
dc.identifier.issn1996-1944
dc.identifier.otherav_00ba90e7-ec52-4c8a-bc11-57a3f807524e
dc.identifier.othervv_1032021
dc.identifier.urihttp://hdl.handle.net/20.500.12627/185558
dc.identifier.urihttps://avesis.istanbul.edu.tr/api/publication/00ba90e7-ec52-4c8a-bc11-57a3f807524e/file
dc.identifier.urihttps://doi.org/10.3390/ma15144993
dc.description.abstractThis paper develops predictive models for optimal dimensions that minimize the construction cost associated with reinforced concrete retaining walls. Random Forest, Extreme Gradient Boosting (XGBoost), Categorical Gradient Boosting (CatBoost), and Light Gradient Boosting Machine (LightGBM) algorithms were applied to obtain the predictive models. Predictive models were trained using a comprehensive dataset, which was generated using the Harmony Search (HS) algorithm. Each data sample in this database consists of a unique combination of the soil density, friction angle, ultimate bearing pressure, surcharge, the unit cost of concrete, and six different dimensions that describe an optimal retaining wall geometry. The influence of these design features on the optimal dimensioning and their interdependence are explained and visualized using the SHapley Additive exPlanations (SHAP) algorithm. The prediction accuracy of the used ensemble learning methods is evaluated with different metrics of accuracy such as the coefficient of determination, root mean square error, and mean absolute error. Comparing predicted and actual optimal dimensions on a test set showed that an R-2 score of 0.99 could be achieved. In terms of computational speed, the LightGBM algorithm was found to be the fastest, with an average execution speed of 6.17 s for the training and testing of the model. On the other hand, the highest accuracy could be achieved by the CatBoost algorithm. The availability of open-source machine learning algorithms and high-quality datasets makes it possible for designers to supplement traditional design procedures with newly developed machine learning techniques. The novel methodology proposed in this paper aims at producing larger datasets, thereby increasing the applicability and accuracy of machine learning algorithms in relation to optimal dimensioning of structures.
dc.language.isoeng
dc.subjectFİZİK, YOĞUN MADDE
dc.subjectMetalurji ve Malzeme Mühendisliği
dc.subjectYoğun Madde 1:Yapısal, Mekanik ve Termal Özellikler
dc.subjectFizikokimya
dc.subjectTemel Bilimler
dc.subjectMühendislik ve Teknoloji
dc.subjectYüzeyler ve Arayüzler
dc.subjectİstatistiksel ve Doğrusal Olmayan Fizik
dc.subjectYoğun Madde Fiziği
dc.subjectYüzeyler, Kaplamalar ve Filmler
dc.subjectMetaller ve Alaşımlar
dc.subjectMalzeme Kimyası
dc.subjectElektronik, Optik ve Manyetik Malzemeler
dc.subjectGenel Malzeme Bilimi
dc.subjectFiziksel ve Teorik Kimya
dc.subjectKimya (çeşitli)
dc.subjectFİZİK, UYGULAMALI
dc.subjectFizik Bilimleri
dc.subjectGenel Kimya
dc.subjectFizik
dc.subjectMETALURJİ VE METALURJİ MÜHENDİSLİĞİ
dc.subjectMühendislik, Bilişim ve Teknoloji (ENG)
dc.subjectMalzeme Bilimi
dc.subjectMALZEME BİLİMİ, ÇOKDİSİPLİNLİ
dc.subjectTemel Bilimler (SCI)
dc.subjectKimya
dc.subjectKİMYA, FİZİKSEL
dc.titleOptimal Dimensioning of Retaining Walls Using Explainable Ensemble Learning Algorithms
dc.typeMakale
dc.relation.journalMATERIALS
dc.contributor.departmentİstanbul Üniversitesi-Cerrahpaşa , Mühendislik Fakültesi , İnşaat Mühendisliği Bölümü
dc.identifier.volume15
dc.identifier.issue14
dc.contributor.firstauthorID3446584


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster