Basit öğe kaydını göster

dc.contributor.authorQi, Zhanpeng
dc.date.accessioned2023-02-21T08:39:43Z
dc.date.available2023-02-21T08:39:43Z
dc.identifier.citationQi Z., "Visualization Enhancement of Parallel Coordinates Plot Based on Fisher Score and Laplacian Score", 2nd International Conference on Forthcoming Networks and Sustainability in the IoT Era (FoNeS-IoT), ELECTR NETWORK, 8 - 09 Ocak 2022, cilt.129, ss.347-355
dc.identifier.otherav_1f56c8f9-b2c9-4a7f-8e8d-5b88cbc35b19
dc.identifier.othervv_1032021
dc.identifier.urihttp://hdl.handle.net/20.500.12627/186847
dc.identifier.urihttps://doi.org/10.1007/978-3-030-99616-1_47
dc.description.abstractOver the past decades, high-dimensional data visualization analysis has always been a hot topic in the field of data science. PCP (Parallel Coordinate Plot) is a very commonly utilized tool in the field of data analysis. To be specific, each feature of the dataset can be illustrated in a Cartesian Coordinate System. To complete the recording on one data from a dataset onto the chart, one needs to find the numerical value of each feature belonging to one data on each feature axis and connect those points on each feature axis together. However, when using PCP to deal with and analyze a large amount of data and features, overlapping and crossing between segments would strongly affect the visualization performance of the chart and therefore increase the difficulty of data analysis. To address such issue, this paper presents a visualization enhancement method that can reorder feature axes on the plot and remove unnecessary feature axes automatically. To reorder and remove feature axes automatically in PCPs, we employed the Fisher score and Laplacian score to reorder features based on the corresponding weight. By comparing the visualization result of reordering for each method, features with low priority among the reordering result of both methods can be observed. After using this method on PCP, the visualization performance of PCPs considerably improved, which demonstrates that the methods based on feature selection are beneficial to optimize the PCP performance.
dc.language.isoeng
dc.subjectBilgisayar Bilimleri
dc.subjectBiyoenformatik
dc.subjectMühendislik ve Teknoloji
dc.subjectTeorik Bilgisayar Bilimi
dc.subjectGenel Mühendislik
dc.subjectMühendislik (çeşitli)
dc.subjectBilgisayar Bilimi Uygulamaları
dc.subjectBilgisayar Ağları ve İletişim
dc.subjectBilgisayar Bilimi (çeşitli)
dc.subjectGenel Bilgisayar Bilimi
dc.subjectMühendislik
dc.subjectFizik Bilimleri
dc.subjectBilgi Sistemleri, Haberleşme ve Kontrol Mühendisliği
dc.subjectTELEKOMÜNİKASYON
dc.subjectMühendislik, Bilişim ve Teknoloji (ENG)
dc.subjectBilgisayar Bilimi
dc.subjectBİLGİSAYAR BİLİMİ, TEORİ VE YÖNTEM
dc.titleVisualization Enhancement of Parallel Coordinates Plot Based on Fisher Score and Laplacian Score
dc.typeBildiri
dc.contributor.departmentUniversity of California System , ,
dc.identifier.volume129
dc.contributor.firstauthorID3446390


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster