• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   Home
  • Avesis
  • Dokümanı Olmayanlar
  • Bildiri
  • View Item
  •   Home
  • Avesis
  • Dokümanı Olmayanlar
  • Bildiri
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Store-based Demand Forecasting of a Company via Ensemble Learning

Author
Tekin, Ahmet Tezcan
Sari, Cem
Metadata
Show full item record
Abstract
Demand forecasting is a topic that is frequently used in the literature and is applied in almost every field. For companies, being able to predict future demand provides a strategic advantage. Especially companies with more than one store have to make demand forecasts for their products on a store basis. The reason for this is that the demand for each product can differ based on the store. For this purpose, although there are many examples of traditional approaches in the literature, machine learning methods have been widely used for demand forecasting in recent years. The use of ensemble learning algorithms along with traditional algorithms in machine learning problems has also positively affected demand forecasting success. In this study; Demand forecasting with store-based historical sales data of a company's products was estimated by machine learning method, and the results of ensemble learning algorithms and traditional machine learning algorithms were compared. To improve the results obtained, hyperparameter optimization was applied to the most successful algorithms and increased prediction success.
URI
http://hdl.handle.net/20.500.12627/187092
https://doi.org/10.1007/978-3-031-09176-6_2
Collections
  • Bildiri [64839]

Creative Commons Lisansı

İstanbul Üniversitesi Akademik Arşiv Sistemi (ilgili içerikte aksi belirtilmediği sürece) Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 


Hakkımızda
Açık Erişim PolitikasıVeri Giriş Rehberleriİletişim
sherpa/romeo
Dergi Adı/ISSN || Yayıncı

Exact phrase only All keywords Any

BaşlıkbaşlayaniçerenISSN

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypesThis CollectionBy Issue DateAuthorsTitlesSubjectsTypes

My Account

LoginRegister

Creative Commons Lisansı

İstanbul Üniversitesi Akademik Arşiv Sistemi (ilgili içerikte aksi belirtilmediği sürece) Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV