Basit öğe kaydını göster

dc.contributor.authorShawuti, Shalima
dc.contributor.authorGulgun, Mehmet A.
dc.date.accessioned2021-03-03T07:46:37Z
dc.date.available2021-03-03T07:46:37Z
dc.identifier.citationShawuti S., Gulgun M. A. , "Solid oxide-molten carbonate nano-composite fuel cells: Particle size effect", JOURNAL OF POWER SOURCES, cilt.267, ss.128-135, 2014
dc.identifier.issn0378-7753
dc.identifier.othervv_1032021
dc.identifier.otherav_13d50886-2492-4fbc-9b2a-848dafd6664d
dc.identifier.urihttp://hdl.handle.net/20.500.12627/18750
dc.identifier.urihttps://doi.org/10.1016/j.jpowsour.2014.05.010
dc.description.abstractVarying the amount of specific interface area in the CeO2-Na2CO3 nanocomposite fuel cell electrolyte helped reveal the role of interfaces in ionic conductivity. We mixed ceria particles with micrometer or nanometer size distributions to obtain a specific surface area (SSA) in the composite from 47 m(2) g(-1) to 203 m(2) g(-1). Microstructural investigations of the nanocomposite showed that the Na2CO3 phase serves as the glue in the microstructure, while thermal analysis revealed a glass transition-like behavior at 350 degrees C. High SSA enhanced the ionic conductivity significantly at temperatures below 400 degrees C. Moreover, the activation energy for the Arrhenius conductivity (sigma T) of the composites was lower than that of the Na2CO3 phase. This difference in the activation energies is consistent with the calculated dissociation energy of the carbonate phase. The strong dependence of conductivity on the SSA, along with differences in the activation energies, suggests that the oxide surface acted as a dissociation agent for the carbonate phase. A model for the solid composite electrolyte is proposed: in the nanocomposite electrolyte, the oxide surface helps Na2CO3 dissociate, so that the "liberated" ions can move easily in the interaction region around the oxide particles, giving rise to high ionic conductivities. (C) 2014 Elsevier B.V. All rights reserved.
dc.language.isoeng
dc.subjectENERJİ VE YAKITLAR
dc.subjectTarımsal Bilimler
dc.subjectTarım Makineleri
dc.subjectTarımda Enerji
dc.subjectBiyoyakıt Teknolojisi
dc.subjectFizikokimya
dc.subjectElektrokimya
dc.subjectTemel Bilimler
dc.subjectMühendislik ve Teknoloji
dc.subjectZiraat
dc.subjectTemel Bilimler (SCI)
dc.subjectKimya
dc.subjectKİMYA, FİZİKSEL
dc.subjectELEKTROKİMYA
dc.subjectMühendislik
dc.subjectMühendislik, Bilişim ve Teknoloji (ENG)
dc.subjectMALZEME BİLİMİ, MULTIDISCIPLINARY
dc.subjectMalzeme Bilimi
dc.titleSolid oxide-molten carbonate nano-composite fuel cells: Particle size effect
dc.typeMakale
dc.relation.journalJOURNAL OF POWER SOURCES
dc.contributor.departmentSabancı Üniversitesi , ,
dc.identifier.volume267
dc.identifier.startpage128
dc.identifier.endpage135
dc.contributor.firstauthorID411528


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster