Basit öğe kaydını göster

dc.contributor.authorBerker, A. Nihat
dc.contributor.authorKaygusuz, Hakan
dc.contributor.authorMandal, Hasan
dc.contributor.authorBaysazan, Emir
dc.date.accessioned2023-05-29T13:22:35Z
dc.date.available2023-05-29T13:22:35Z
dc.date.issued2023
dc.identifier.citationBaysazan E., Berker A. N., Mandal H., Kaygusuz H., "COVID-19 modeling based on real geographic and population data", Turkish Journal of Medical Sciences, cilt.53, sa.1, ss.333-339, 2023
dc.identifier.issn1300-0144
dc.identifier.othervv_1032021
dc.identifier.otherav_30704eb6-66c0-4a38-b72b-5d6199e78f34
dc.identifier.urihttp://hdl.handle.net/20.500.12627/189016
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85149134224&origin=inward
dc.identifier.urihttps://doi.org/10.55730/1300-0144.5589
dc.description.abstractBackground/aim: Intercity travel is one of the most important parameters for combating a pandemic. The ongoing COVID-19 pandemic has resulted in different computational studies involving intercity connections. In this study, the effects of intercity connections during an epidemic such as COVID-19 are evaluated using a new network model. Materials and methods: This model considers the actual geographic neighborhood and population density data. This new model is applied to actual Turkish data by means of provincial connections and populations. A Monte Carlo algorithm with a hybrid lattice model is applied to a lattice with 8802 data points. Results: Around Monte Carlo step 70, the number of active cases in Türkiye reaches up to 8.0% of the total population, which is followed by a second wave at around Monte Carlo step 100. The number of active cases vanishes around Monte Carlo step 160. Starting with İstanbul, the epidemic quickly expands between steps 60 and 100. Simulation results fit the actual mortality data in Türkiye. Conclusion: This model is quantitatively very efficient in modeling real-world COVID-19 epidemic data based on populations and geographical intercity connections, by means of estimating the number of deaths, disease spread, and epidemic termination.
dc.language.isoeng
dc.subjectTıp
dc.subjectTIP, GENEL & DAHİLİ
dc.subjectTemel Tıp Bilimleri
dc.subjectSağlık Bilimleri
dc.subjectGenel Tıp
dc.subjectKlinik Tıp (MED)
dc.subjectKlinik Tıp
dc.titleCOVID-19 modeling based on real geographic and population data
dc.typeMakale
dc.relation.journalTurkish Journal of Medical Sciences
dc.contributor.departmentİstanbul Üniversitesi , ,
dc.identifier.volume53
dc.identifier.issue1
dc.identifier.startpage333
dc.identifier.endpage339
dc.contributor.firstauthorID4256312


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster