• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   Home
  • Avesis
  • Dokümanı Olmayanlar
  • Makale
  • View Item
  •   Home
  • Avesis
  • Dokümanı Olmayanlar
  • Makale
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Data-driven ensemble learning approach for optimal design of cantilever soldier pile retaining walls

Author
Islam, Kamrul
Nehdi, Moncef L.
BEKDAŞ, GEBRAİL
Cakiroglu, Celal
Metadata
Show full item record
Abstract
Cantilever soldier pile retaining walls are used to ensure the stability of excavations. This paper deploys ensemble machine learning algorithms towards achieving optimum design of these structures. A large dataset was developed consisting of 40,569 combinations of pile geometry, external loading, soil properties, and con-crete unit cost, with two different values of soil reaction coefficient. Optimum pile diameter that minimizes the total cost of the retaining wall was computed considering the structural load-carrying capacity as the optimi-zation constraint. The dataset was split into training and testing sets at 70% to 30% ratio. The predictive ac-curacy of the ensemble machine learning models was appraised on the testing dataset using various statistical metrics. Model performance was also evaluated for its ability in predicting the optimum pile diameter. The developed models demonstrated excellent predictive accuracy. Furthermore, the effect of different input vari-ables on the model predictions was explained using the SHapely Additive exPlanations (SHAP) approach. Through the SHAP algorithm, the pile length was identified as the design variable having the most significant effect on the optimum pile diameter. The study demonstrates ensemble learning techniques as a viable alter-native to the traditional techniques in the optimum design of cantilever soldier pile retaining walls.
URI
http://hdl.handle.net/20.500.12627/190407
https://doi.org/10.1016/j.istruc.2023.03.109
Collections
  • Makale [92796]

Creative Commons Lisansı

İstanbul Üniversitesi Akademik Arşiv Sistemi (ilgili içerikte aksi belirtilmediği sürece) Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 


Hakkımızda
Açık Erişim PolitikasıVeri Giriş Rehberleriİletişim
sherpa/romeo
Dergi Adı/ISSN || Yayıncı

Exact phrase only All keywords Any

BaşlıkbaşlayaniçerenISSN

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypesThis CollectionBy Issue DateAuthorsTitlesSubjectsTypes

My Account

LoginRegister

Creative Commons Lisansı

İstanbul Üniversitesi Akademik Arşiv Sistemi (ilgili içerikte aksi belirtilmediği sürece) Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV