Basit öğe kaydını göster

dc.contributor.authorGulec, Cagri
dc.contributor.authorArguden, Yelda Tarkan
dc.contributor.authorYÜCESAN, EMRAH
dc.contributor.authorÇIRAKOĞLU, AYŞE
dc.contributor.authorTuna, Süha
dc.date.accessioned2023-10-10T13:05:29Z
dc.date.available2023-10-10T13:05:29Z
dc.identifier.citationTuna S., Gulec C., YÜCESAN E., ÇIRAKOĞLU A., Arguden Y. T., "Gene Teams are on the Field: Evaluation of Variants in Gene-Networks Using High Dimensional Modelling", IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2023
dc.identifier.issn1545-5963
dc.identifier.othervv_1032021
dc.identifier.otherav_2b92ef66-3c7a-4b44-95d3-9f567c3848fe
dc.identifier.urihttp://hdl.handle.net/20.500.12627/190422
dc.identifier.urihttps://avesis.istanbul.edu.tr/api/publication/2b92ef66-3c7a-4b44-95d3-9f567c3848fe/file
dc.identifier.urihttps://doi.org/10.1109/tcbb.2023.3292245
dc.description.abstractIn medical genetics, each genetic variant is evaluated as an independent entity regarding its clinical importance. However, in most complex diseases, variant combinations in specific gene networks, rather than the presence of a particular single variant, predominates. In the case of complex diseases, disease status can be evaluated by considering the success level of a team of specific variants. We propose a high dimensional modelling based method to analyse all the variants in a gene network together, which we name “Computational Gene Network Analysis” (CoGNA).To evaluate our method, we selected two gene networks, mTOR and TGF-$ beta$. For each pathway, we generated 400 control and 400 patient group samples. mTOR and TGF-$ beta$ pathways contain 31 and 93 genes of varying sizes, respectively. We produced Chaos Game Representation images for each gene sequence to obtain 2-D binary patterns. These patterns were arranged in succession, and a 3-D tensor structure was achieved for each gene network. Features for each data sample were acquired by exploiting Enhanced Multivariance Products Representation to 3-D data. Features were split as training and testing vectors. Training vectors were employed to train a Support Vector Machines classification model. We achieved more than $96 %$ and $99 %$ classification accuracies for mTOR and TGF-$ beta$ networks, respectively, using a limited amount of training samples.
dc.language.isoeng
dc.subjectTıp
dc.subjectDahili Tıp Bilimleri
dc.subjectTıbbi Genetik
dc.subjectYaşam Bilimleri
dc.subjectBiyoteknoloji
dc.subjectBilgisayar Bilimleri
dc.subjectSağlık Bilimleri
dc.subjectTemel Bilimler
dc.subjectGenetik
dc.subjectUygulamalı matematik
dc.subjectFizik Bilimleri
dc.subjectBİYOTEKNOLOJİ VE UYGULAMALI MİKROBİYOLOJİ
dc.subjectMoleküler Biyoloji ve Genetik
dc.subjectMatematik
dc.subjectYaşam Bilimleri (LIFE)
dc.subjectTemel Bilimler (SCI)
dc.subjectGENETİK VE KALITIM
dc.subjectMATEMATİK, UYGULAMALI
dc.subjectMikrobiyoloji
dc.titleGene Teams are on the Field: Evaluation of Variants in Gene-Networks Using High Dimensional Modelling
dc.typeMakale
dc.relation.journalIEEE/ACM Transactions on Computational Biology and Bioinformatics
dc.contributor.departmentİstanbul Teknik Üniversitesi , Bilişim Enstitüsü , Hesaplamalı Bilim Ve Mühendislik
dc.contributor.firstauthorID4367848


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster