Show simple item record

dc.contributor.authorErdem, Savas
dc.contributor.authorBlankson, Marva Angela
dc.date.accessioned2021-03-03T08:11:43Z
dc.date.available2021-03-03T08:11:43Z
dc.identifier.citationErdem S., Blankson M. A. , "Fractal-fracture analysis and characterization of impact-fractured surfaces in different types of concrete using digital image analysis and 3D nanomap laser profilometery", CONSTRUCTION AND BUILDING MATERIALS, cilt.40, ss.70-76, 2013
dc.identifier.issn0950-0618
dc.identifier.othervv_1032021
dc.identifier.otherav_16379040-cf41-4bed-b091-3230a319d0a2
dc.identifier.urihttp://hdl.handle.net/20.500.12627/20292
dc.identifier.urihttps://doi.org/10.1016/j.conbuildmat.2012.11.013
dc.description.abstractThe main of objective of this paper is to determine quantitatively the fractal character and texture of fracture surfaces and to investigate their influence on the fracture-related properties in different types of concrete having different interfacial bonding properties and coarse aggregate characteristics. Concretes made with granite and Coldstone limestone aggregate were tested for failure under fast dynamic loading; and the fracture profiles was digitized and analyzed by means of image analysis and laser profilometery. It was deduced that a relatively porous and weak interfacial zone in the concrete with granite particles deferred fractures to reach critical length and thus, more energy is consumed for the coalescence of cracks, resulting in a fracture surface with high degree roughness and fractal dimension. The analysis also indicated that the aggregate changes from smooth and rounded and more to rough and angular there is a corresponding increase in roughness of the fracture surfaces. Finally, it was concluded that the elastic compatibility between the aggregate and matrix disorders the fracture pattern which makes the material ductile and contributes to the understanding of the higher fractal dimension and correspondingly more fracture energy absorption capacity. (C) 2012 Elsevier Ltd. All rights reserved.
dc.language.isoeng
dc.subjectYapı
dc.subjectMühendislik ve Teknoloji
dc.subjectMÜHENDİSLİK, SİVİL
dc.subjectİnşaat Mühendisliği
dc.subjectMALZEME BİLİMİ, MULTIDISCIPLINARY
dc.subjectMalzeme Bilimi
dc.subjectMühendislik, Bilişim ve Teknoloji (ENG)
dc.subjectMühendislik
dc.subjectİNŞAAT VE YAPI TEKNOLOJİSİ
dc.titleFractal-fracture analysis and characterization of impact-fractured surfaces in different types of concrete using digital image analysis and 3D nanomap laser profilometery
dc.typeMakale
dc.relation.journalCONSTRUCTION AND BUILDING MATERIALS
dc.contributor.departmentUniversity Of Nottingham , ,
dc.identifier.volume40
dc.identifier.startpage70
dc.identifier.endpage76
dc.contributor.firstauthorID85839


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record