Show simple item record

dc.contributor.authorAKAN, AYDIN
dc.contributor.authorBasar, Merve Dogruyol
dc.date.accessioned2021-03-03T10:29:45Z
dc.date.available2021-03-03T10:29:45Z
dc.identifier.citationBasar M. D. , AKAN A., "Detection of Chronic Kidney Disease by Using Ensemble Classifiers", 10th International Conference on Electrical and Electronics Engineering (ELECO), Bursa, Türkiye, 30 Kasım - 02 Aralık 2017, ss.544-547
dc.identifier.othervv_1032021
dc.identifier.otherav_22e4ef64-5bf0-4a96-ade0-53ee4832d86e
dc.identifier.urihttp://hdl.handle.net/20.500.12627/28444
dc.description.abstractChronic kidney disease is a major health problem that affect the lives of millions of people around the world and causes serious economical, social and medical problems. Chronic kidney disease can be detected with several automatic diagnosis systems. In this study, we apply Adaboost, Bagging and Random Subspaces ensemble learning algorithms for the diagnosis of chronic kidney diseases. Decision tree based classifiers are used in the decision stage. The classification performances are evaluated with kappa and accuracy criteria. Considering the performance analyses of the proposed systems, it is observed that ensemble learning classifiers provide better classification performance than individual classifiers.
dc.language.isoeng
dc.subjectMühendislik ve Teknoloji
dc.subjectBilgi Sistemleri, Haberleşme ve Kontrol Mühendisliği
dc.subjectSinyal İşleme
dc.subjectMühendislik, Bilişim ve Teknoloji (ENG)
dc.subjectMühendislik
dc.subjectMÜHENDİSLİK, ELEKTRİK VE ELEKTRONİK
dc.titleDetection of Chronic Kidney Disease by Using Ensemble Classifiers
dc.typeBildiri
dc.contributor.departmentİzmir Katip Çelebi Üniversitesi , Mühendislik Ve Mimarlık Fakültesi , Biyomedikal Mühendisliği Anabilim Dalı
dc.contributor.firstauthorID150633


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record