dc.contributor.author | AKAN, AYDIN | |
dc.contributor.author | Basar, Merve Dogruyol | |
dc.date.accessioned | 2021-03-03T10:29:45Z | |
dc.date.available | 2021-03-03T10:29:45Z | |
dc.identifier.citation | Basar M. D. , AKAN A., "Detection of Chronic Kidney Disease by Using Ensemble Classifiers", 10th International Conference on Electrical and Electronics Engineering (ELECO), Bursa, Türkiye, 30 Kasım - 02 Aralık 2017, ss.544-547 | |
dc.identifier.other | vv_1032021 | |
dc.identifier.other | av_22e4ef64-5bf0-4a96-ade0-53ee4832d86e | |
dc.identifier.uri | http://hdl.handle.net/20.500.12627/28444 | |
dc.description.abstract | Chronic kidney disease is a major health problem that affect the lives of millions of people around the world and causes serious economical, social and medical problems. Chronic kidney disease can be detected with several automatic diagnosis systems. In this study, we apply Adaboost, Bagging and Random Subspaces ensemble learning algorithms for the diagnosis of chronic kidney diseases. Decision tree based classifiers are used in the decision stage. The classification performances are evaluated with kappa and accuracy criteria. Considering the performance analyses of the proposed systems, it is observed that ensemble learning classifiers provide better classification performance than individual classifiers. | |
dc.language.iso | eng | |
dc.subject | Mühendislik ve Teknoloji | |
dc.subject | Bilgi Sistemleri, Haberleşme ve Kontrol Mühendisliği | |
dc.subject | Sinyal İşleme | |
dc.subject | Mühendislik, Bilişim ve Teknoloji (ENG) | |
dc.subject | Mühendislik | |
dc.subject | MÜHENDİSLİK, ELEKTRİK VE ELEKTRONİK | |
dc.title | Detection of Chronic Kidney Disease by Using Ensemble Classifiers | |
dc.type | Bildiri | |
dc.contributor.department | İzmir Katip Çelebi Üniversitesi , Mühendislik Ve Mimarlık Fakültesi , Biyomedikal Mühendisliği Anabilim Dalı | |
dc.contributor.firstauthorID | 150633 | |