Show simple item record

dc.contributor.authorCevri, Mehmet
dc.contributor.authorÜSTÜNDAĞ, DURSUN
dc.date.accessioned2021-03-03T10:55:01Z
dc.date.available2021-03-03T10:55:01Z
dc.date.issued2012
dc.identifier.citationCevri M., ÜSTÜNDAĞ D., "Bayesian recovery of sinusoids from noisy data with parallel tempering", IET SIGNAL PROCESSING, cilt.6, sa.7, ss.673-683, 2012
dc.identifier.issn1751-9675
dc.identifier.othervv_1032021
dc.identifier.otherav_254dfc69-db47-4b77-9c19-d9598fd5d5dc
dc.identifier.urihttp://hdl.handle.net/20.500.12627/29967
dc.identifier.urihttps://doi.org/10.1049/iet-spr.2011.0335
dc.description.abstractThis study deals with parameter estimation of sinusoids within a Bayesian framework, where inferences about the parameters require an evaluation of complicated high-dimensional integrals and a solution of multi-dimensional optimisation of their posterior probability density function (PDF) under a combination of different prior PDFs of parameters. In this context, the authors make an attempt to improve an efficient stochastic procedure based on a parallel tempering Markov chain Monte Carlo sampler with a proposal distribution whose width varies with a Cramer-Rao lower bound (CRLB), known as a lower limit on variance of any unbiased estimator. Its algorithm is coded in 'Mathematica', which provides a much flexible and efficient computer programming environment. Computer simulations are included to corroborate theoretical developments and to compare the estimator performance with the CRLB for different length of data sampling and signal-to-noise ratio (SNR) conditions. Therefore all simulations support its effectiveness and demonstrate its performance in terms of CRLB for sufficiently high-SNR and short data lengths.
dc.language.isoeng
dc.subjectBilgi Sistemleri, Haberleşme ve Kontrol Mühendisliği
dc.subjectMÜHENDİSLİK, ELEKTRİK VE ELEKTRONİK
dc.subjectMühendislik
dc.subjectMühendislik, Bilişim ve Teknoloji (ENG)
dc.subjectSinyal İşleme
dc.subjectMühendislik ve Teknoloji
dc.titleBayesian recovery of sinusoids from noisy data with parallel tempering
dc.typeMakale
dc.relation.journalIET SIGNAL PROCESSING
dc.contributor.departmentMarmara Üniversitesi , Fen - Edebiyat Fakültesi , Matematik Bölümü
dc.identifier.volume6
dc.identifier.issue7
dc.identifier.startpage673
dc.identifier.endpage683
dc.contributor.firstauthorID75132


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record