dc.contributor.author | Akan, A. | |
dc.contributor.author | Tartar, A. | |
dc.contributor.author | Kilic, N. | |
dc.date.accessioned | 2021-03-03T11:35:05Z | |
dc.date.available | 2021-03-03T11:35:05Z | |
dc.identifier.citation | Tartar A., Akan A., Kilic N., "A Novel Approach to Malignant-Benign Classification of Pulmonary Nodules by Using Ensemble Learning Classifiers", 36th Annual International Conference of the IEEE-Engineering-in-Medicine-and-Biology-Society (EMBC), Illinois, Amerika Birleşik Devletleri, 26 - 30 Ağustos 2014, ss.4651-4654 | |
dc.identifier.other | vv_1032021 | |
dc.identifier.other | av_28c16a66-a9fd-4a0e-aa40-3eef81c66f44 | |
dc.identifier.uri | http://hdl.handle.net/20.500.12627/32245 | |
dc.identifier.uri | https://doi.org/10.1109/embc.2014.6944661 | |
dc.description.abstract | Computer-aided detection systems can help radiologists to detect pulmonary nodules at an early stage. In this paper, a novel Computer-Aided Diagnosis system (CAD) is proposed for the classification of pulmonary nodules as malignant and benign. The proposed CAD system using ensemble learning classifiers, provides an important support to radiologists at the diagnosis process of the disease, achieves high classification performance. The proposed approach with bagging classifier results in 94.7 %, 90.0 % and 77.8 % classification sensitivities for benign, malignant and undetermined classes (89.5 % accuracy), respectively. | |
dc.language.iso | eng | |
dc.subject | Biyomedikal Mühendisliği | |
dc.subject | Mühendislik ve Teknoloji | |
dc.subject | Bilgi Sistemleri, Haberleşme ve Kontrol Mühendisliği | |
dc.subject | Sinyal İşleme | |
dc.subject | MÜHENDİSLİK, ELEKTRİK VE ELEKTRONİK | |
dc.subject | Mühendislik, Bilişim ve Teknoloji (ENG) | |
dc.subject | Mühendislik | |
dc.subject | MÜHENDİSLİK, BİYOMEDİKSEL | |
dc.title | A Novel Approach to Malignant-Benign Classification of Pulmonary Nodules by Using Ensemble Learning Classifiers | |
dc.type | Bildiri | |
dc.contributor.department | İstanbul Üniversitesi , , | |
dc.contributor.firstauthorID | 143249 | |