Basit öğe kaydını göster

dc.contributor.authorAkan, Aydin
dc.contributor.authorPatlar Akbulut, Fatma
dc.date.accessioned2021-03-03T12:48:50Z
dc.date.available2021-03-03T12:48:50Z
dc.date.issued2017
dc.identifier.citationPatlar Akbulut F., Akan A., "SUPPORT VECTOR MACHINES COMBINED WITH FEATURE SELECTION FOR DIABETES DIAGNOSIS", ISTANBUL UNIVERSITY-JOURNAL OF ELECTRICAL AND ELECTRONICS ENGINEERING, cilt.17, sa.1, ss.3219-3225, 2017
dc.identifier.othervv_1032021
dc.identifier.otherav_3041909a-77c5-46b7-bb46-eed9f9f521a9
dc.identifier.urihttp://hdl.handle.net/20.500.12627/36923
dc.description.abstractClinical Decision Support Systems (CDSS) are used as a service software which provides huge support to clinical decision making process where the main properties of a patient are matched to a tangible clinical knowledge. Within this gathered important information about patients, the medical decisions can be made more accurately. In this paper we present a CDSS that uses four physiological parameters of patients such as Pre-prandial Blood Glucose, Postprandial Blood Glucose, Hemoglobin A1C (HbA(1c)) and Glucose in Urine to produce a prediction about the possibility of being diabetic. According to collected reference data provided from hospitals, the disease can be predicted by comparing the input data of patients. If the system cannot procure a prediction about patients' status with these parameters, then the second phase which uses soft computing techniques is put into process with requesting additional data about patients. Our conducted experiments show that the diagnosis can be established in a breeze by getting the patients information with % 80 accuracy. Support Vector Machines were applied to achieve maximum success rate with nine different physiological parameters such as; Pregnancy, glucose, blood pressure, skin fold, insulin, Hemoglobin A1C, body mass index, family tree and age. Four different Kernel Functions are implemented in case studies and classification process is optimized by reducing attributes with feature selection algorithms. This represents an improvement in classification of CDSS, while reducing computational complexity.
dc.language.isoeng
dc.subjectBiyolojik Oşinografi (Deniz Biyolojisi
dc.subjectBilgi Sistemleri, Haberleşme ve Kontrol Mühendisliği
dc.subjectSinyal İşleme
dc.subjectMühendislik ve Teknoloji
dc.subjectMÜHENDİSLİK, ELEKTRİK VE ELEKTRONİK
dc.subjectDeniz Bilimleri ve Teknolojisi
dc.subjectOşinografi
dc.subjectMühendislik, Bilişim ve Teknoloji (ENG)
dc.subjectMühendislik
dc.subjectMÜHENDİSLİK, OCEAN
dc.titleSUPPORT VECTOR MACHINES COMBINED WITH FEATURE SELECTION FOR DIABETES DIAGNOSIS
dc.typeMakale
dc.relation.journalISTANBUL UNIVERSITY-JOURNAL OF ELECTRICAL AND ELECTRONICS ENGINEERING
dc.contributor.departmentİstanbul Üniversitesi , ,
dc.identifier.volume17
dc.identifier.issue1
dc.identifier.startpage3219
dc.identifier.endpage3225
dc.contributor.firstauthorID238131


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster