Basit öğe kaydını göster

dc.contributor.authorEesa, Adel Sabry
dc.contributor.authorOrman, Zeynep
dc.contributor.authorBRIFCANI, Adnan Mohsin Abdulazeez
dc.date.accessioned2021-03-03T14:53:06Z
dc.date.available2021-03-03T14:53:06Z
dc.date.issued2015
dc.identifier.citationEesa A. S. , Orman Z., BRIFCANI A. M. A. , "A novel feature-selection approach based on the cuttlefish optimization algorithm for intrusion detection systems", EXPERT SYSTEMS WITH APPLICATIONS, cilt.42, sa.5, ss.2670-2679, 2015
dc.identifier.issn0957-4174
dc.identifier.otherav_3bf73b37-8ad2-4ede-9cdc-29a145022acc
dc.identifier.othervv_1032021
dc.identifier.urihttp://hdl.handle.net/20.500.12627/44255
dc.identifier.urihttps://doi.org/10.1016/j.eswa.2014.11.009
dc.description.abstractThis paper presents a new feature-selection approach based on the cuttlefish optimization algorithm which is used for intrusion detection systems (IDSs). Because IDSs deal with a large amount of data, one of the crucial tasks of IDSs is to keep the best quality of features that represent the whole data and remove the redundant and irrelevant features. The proposed model uses the cuttlefish algorithm (CFA) as a search strategy to ascertain the optimal subset of features and the decision tree (DT) classifier as a judgement on the selected features that are produced by the CFA. The KDD Cup 99 dataset is used to evaluate the proposed model. The results show that the feature subset obtained by using CFA gives a higher detection rate and accuracy rate with a lower false alarm rate, when compared with the obtained results using all features. (C) 2014 Elsevier Ltd. All rights reserved.
dc.language.isoeng
dc.subjectSosyal ve Beşeri Bilimler
dc.subjectEkonometri
dc.subjectYöneylem
dc.subjectBilgi Sistemleri, Haberleşme ve Kontrol Mühendisliği
dc.subjectSinyal İşleme
dc.subjectBilgisayar Bilimleri
dc.subjectAlgoritmalar
dc.subjectMühendislik ve Teknoloji
dc.subjectEkonomi ve İş
dc.subjectSosyal Bilimler (SOC)
dc.subjectOPERASYON ARAŞTIRMA VE YÖNETİM BİLİMİ
dc.subjectMühendislik
dc.subjectMÜHENDİSLİK, ELEKTRİK VE ELEKTRONİK
dc.subjectMühendislik, Bilişim ve Teknoloji (ENG)
dc.subjectBilgisayar Bilimi
dc.subjectBİLGİSAYAR BİLİMİ, YAPAY ZEKA
dc.titleA novel feature-selection approach based on the cuttlefish optimization algorithm for intrusion detection systems
dc.typeMakale
dc.relation.journalEXPERT SYSTEMS WITH APPLICATIONS
dc.contributor.departmentZakho Univ , ,
dc.identifier.volume42
dc.identifier.issue5
dc.identifier.startpage2670
dc.identifier.endpage2679
dc.contributor.firstauthorID76761


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster