Show simple item record

dc.contributor.authorDogan, HAKAN
dc.date.accessioned2021-03-03T15:31:21Z
dc.date.available2021-03-03T15:31:21Z
dc.date.issued2008
dc.identifier.citationDogan H., "EM/SAGE Based ML Channel Estimation for Uplink DS-CDMA Systems over Time-Varying Fading Channels", IEEE COMMUNICATIONS LETTERS, cilt.12, sa.10, ss.740-742, 2008
dc.identifier.issn1089-7798
dc.identifier.otherav_3f5c2d64-26c7-469d-b687-13cd7c259fc5
dc.identifier.othervv_1032021
dc.identifier.urihttp://hdl.handle.net/20.500.12627/46402
dc.identifier.urihttps://doi.org/10.1109/lcomm.2008.081028
dc.description.abstractThe matrix inversion for the maximum likelihood (ML) channel estimation requires high complexity for the direct-sequence code-division multiple-access (DS-CDMA) systems. The prime motivation of the paper is to propose channel estimators that achieve mean square error (MSE) performance of ML channel estimator in an iterative manner without any matrix inversion. Therefore, two computationally efficient solutions to the problem of ML channel estimation are proposed. We compare the both algorithms in terms of the number of used iteration and show that the proposed algorithms converge the same MSE performance of the ML estimator as the increasing number of iterations.
dc.language.isoeng
dc.subjectMühendislik, Bilişim ve Teknoloji (ENG)
dc.subjectMühendislik ve Teknoloji
dc.subjectTELEKOMÜNİKASYON
dc.subjectMühendislik
dc.subjectBilgi Sistemleri, Haberleşme ve Kontrol Mühendisliği
dc.titleEM/SAGE Based ML Channel Estimation for Uplink DS-CDMA Systems over Time-Varying Fading Channels
dc.typeMakale
dc.relation.journalIEEE COMMUNICATIONS LETTERS
dc.contributor.departmentİstanbul Üniversitesi , Mühendislik Fakültesi , Elektrik Elektronik Mühendisliği
dc.identifier.volume12
dc.identifier.issue10
dc.identifier.startpage740
dc.identifier.endpage742
dc.contributor.firstauthorID81378


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record