Basit öğe kaydını göster

dc.contributor.authorSahin, Ulku Alver
dc.contributor.authorBayat, Cuma
dc.contributor.authorUÇAN, OSMAN NURİ
dc.date.accessioned2021-03-03T16:13:18Z
dc.date.available2021-03-03T16:13:18Z
dc.identifier.citationSahin U. A. , Bayat C., UÇAN O. N. , "Application of cellular neural network (CNN) to the prediction of missing air pollutant data", ATMOSPHERIC RESEARCH, cilt.101, ss.314-326, 2011
dc.identifier.issn0169-8095
dc.identifier.othervv_1032021
dc.identifier.otherav_430c680c-1c4a-4d27-8461-c6e70428ae99
dc.identifier.urihttp://hdl.handle.net/20.500.12627/48790
dc.identifier.urihttps://doi.org/10.1016/j.atmosres.2011.03.005
dc.description.abstractFor air-quality assessments in most major urban centers, air pollutants are monitored using continuous samplers. Sometimes data are not collected due to equipment failure or during equipment calibration. In this paper, we predict daily air pollutant concentrations (PM(10) and SO(2)) from the Yenibosna and Umraniye air pollution measurement stations in Istanbul for times at which pollution data was not recorded. We predicted these pollutant concentrations using the CNN model with meteorological parameters, estimating missing daily pollutant concentrations for two data sets from 2002 to 2003. These data sets had 50 and 20% of data missing. The results of the CNN model predictions are compared with the results of a multi-variate linear regression (LR). Results show that the correlation between predicted and observed data was higher for all pollutants using the CNN model (0.54-0.87). The CNN model predicted SO(2) concentrations better than PM(10) concentrations. Another interesting result is that winter concentrations of all pollutants were predicted better than summer concentrations. Experiments showed that accurate predictions of missing air pollutant concentrations are possible using the new approach contained in the CNN model. We therefore proposed a new approach to model air-pollution monitoring problem using CNN. (C) 2011 Elsevier B.V. All rights reserved.
dc.language.isoeng
dc.subjectMühendislik ve Teknoloji
dc.subjectYerbilimleri
dc.subjectMETEOROLOJİ VE ATMOSFER BİLİMLERİ
dc.subjectTemel Bilimler (SCI)
dc.subjectAtmosfer Bilimleri ve Meteoroloji Mühendisliği
dc.titleApplication of cellular neural network (CNN) to the prediction of missing air pollutant data
dc.typeMakale
dc.relation.journalATMOSPHERIC RESEARCH
dc.contributor.departmentİstanbul Üniversitesi , ,
dc.identifier.volume101
dc.identifier.startpage314
dc.identifier.endpage326
dc.contributor.firstauthorID201166


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster