Show simple item record

dc.contributor.authorKlein, Michael T.
dc.contributor.authorDeniz, Celal Utku
dc.contributor.authorYasar, Muzaffer
dc.date.accessioned2021-03-03T16:58:42Z
dc.date.available2021-03-03T16:58:42Z
dc.date.issued2017
dc.identifier.citationDeniz C. U. , Yasar M., Klein M. T. , "Stochastic Reconstruction of Complex Heavy Oil Molecules Using an Artificial Neural Network", ENERGY & FUELS, cilt.31, sa.11, ss.11932-11938, 2017
dc.identifier.issn0887-0624
dc.identifier.otherav_474045fc-4509-430c-b6a9-c55846c87710
dc.identifier.othervv_1032021
dc.identifier.urihttp://hdl.handle.net/20.500.12627/51459
dc.identifier.urihttps://doi.org/10.1021/acs.energyfuels.7b02311
dc.description.abstractAn approach for the stochastic reconstruction of petroleum fractions based on the joint use of artificial neural networks and genetic algorithms was developed. This hybrid approach reduced the time required for optimization of the composition of the petroleum fraction without sacrificing accuracy. A reasonable initial structural parameter set in the optimization space was determined using an artificial neural network. Then, the initial parameter set was optimized using a genetic algorithm. The simulations show that the time savings were between 62 and 74% for the samples used. This development is critical, considering that the characteristic time required for the optimization procedure is hours or even days for stochastic reconstruction. In addition, the standalone use of the artificial neural network step that produces instantaneous results may help where it is necessary to make quick decisions.
dc.language.isoeng
dc.subjectBiyoyakıt Teknolojisi
dc.subjectKimya Mühendisliği ve Teknolojisi
dc.subjectMühendislik ve Teknoloji
dc.subjectZiraat
dc.subjectTarımda Enerji
dc.subjectTarım Makineleri
dc.subjectTarımsal Bilimler
dc.subjectMÜHENDİSLİK, KİMYASAL
dc.subjectMühendislik, Bilişim ve Teknoloji (ENG)
dc.subjectMühendislik
dc.subjectENERJİ VE YAKITLAR
dc.titleStochastic Reconstruction of Complex Heavy Oil Molecules Using an Artificial Neural Network
dc.typeMakale
dc.relation.journalENERGY & FUELS
dc.contributor.departmentUniversity Of Delaware , ,
dc.identifier.volume31
dc.identifier.issue11
dc.identifier.startpage11932
dc.identifier.endpage11938
dc.contributor.firstauthorID247359


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record