Basit öğe kaydını göster

dc.contributor.authorMemis, Abbas
dc.contributor.authorBilgili, Fuat
dc.contributor.authorVARLI, Songül
dc.date.accessioned2021-03-02T19:15:30Z
dc.date.available2021-03-02T19:15:30Z
dc.identifier.citationMemis A., VARLI S., Bilgili F., "Semantic segmentation of the multiform proximal femur and femoral head bones with the deep convolutional neural networks in low quality MRI sections acquired in different MRI protocols", COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, cilt.81, 2020
dc.identifier.issn0895-6111
dc.identifier.othervv_1032021
dc.identifier.otherav_919bb31b-c2d5-407f-892a-a51eec58b0d0
dc.identifier.urihttp://hdl.handle.net/20.500.12627/5429
dc.identifier.urihttps://doi.org/10.1016/j.compmedimg.2020.101715
dc.description.abstractMedical image segmentation is one of the most crucial issues in medical image processing and analysis. In general, segmentation of the various structures in medical images is performed for the further image analyzes such as quantification, assessment, diagnosis, prognosis and classification. In this paper, a research study for the 2D semantic segmentation of the multiform, both spheric and aspheric, femoral head and proximal femur bones in magnetic resonance imaging (MRI) sections of the patients with Legg-Calve-Perthes disease (LCPD) with the deep convolutional neural networks (CNNs) is presented. In the scope of the proposed study, bilateral hip MRI sections acquired in coronal plane were used. The main characteristic of the MRI sections that were used is to be low quality images which were obtained in different MRI protocols by using 3 different MRI scanners with 1.5 T imaging capability. In performance evaluations, promising segmentation results were achieved with deep CNNs in low quality MRI sections acquired in different MRI protocols. A success rate about 90% was observed in semantic segmentation of the multiform femoral head and proximal femur bones in a total of 194 MRI sections obtained from 33 MRI sequences of 13 patients with deep CNNs. (C) 2020 Elsevier Ltd. All rights reserved.
dc.language.isoeng
dc.subjectSağlık Bilimleri
dc.subjectDahili Tıp Bilimleri
dc.subjectNükleer Tıp
dc.subjectBiyomedikal Mühendisliği
dc.subjectMühendislik ve Teknoloji
dc.subjectRADYOLOJİ, NÜKLEER TIP ve MEDİKAL GÖRÜNTÜLEME
dc.subjectKlinik Tıp
dc.subjectKlinik Tıp (MED)
dc.subjectTıp
dc.subjectMühendislik, Bilişim ve Teknoloji (ENG)
dc.subjectMühendislik
dc.subjectMÜHENDİSLİK, BİYOMEDİKSEL
dc.titleSemantic segmentation of the multiform proximal femur and femoral head bones with the deep convolutional neural networks in low quality MRI sections acquired in different MRI protocols
dc.typeMakale
dc.relation.journalCOMPUTERIZED MEDICAL IMAGING AND GRAPHICS
dc.contributor.departmentYıldız Teknik Üniversitesi , ,
dc.identifier.volume81
dc.contributor.firstauthorID2280217


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster