Basit öğe kaydını göster

dc.contributor.authorKarabayır, İbrahim
dc.contributor.authorTaş, Nihat
dc.contributor.authorAkbilgiç, Oğuz
dc.date.accessioned2021-03-02T19:16:12Z
dc.date.available2021-03-02T19:16:12Z
dc.identifier.citationKarabayır İ., Akbilgiç O., Taş N., "A Novel Learning Algorithm to Optimize Deep Neural Networks: Evolved Gradient Direction Optimizer (EVGO)", IEEE Transactions On Neural Networks And Learning Systems, cilt.31, ss.1-10, 2020
dc.identifier.issn2162-237X
dc.identifier.othervv_1032021
dc.identifier.otherav_ddb16077-c053-4a99-b027-cac316e06fd2
dc.identifier.urihttp://hdl.handle.net/20.500.12627/5483
dc.identifier.urihttps://ieeexplore.ieee.org/document/9055384
dc.identifier.urihttps://doi.org/10.1109/tnnls.2020.2979121
dc.description.abstractGradient-based algorithms have been widely used in optimizing parameters of deep neural networks' (DNNs) architectures. However, the vanishing gradient remains as one of the common issues in the parameter optimization of such networks. To cope with the vanishing gradient problem, in this article, we propose a novel algorithm, evolved gradient direction optimizer (EVGO), updating the weights of DNNs based on the first-order gradient and a novel hyperplane we introduce. We compare the EVGO algorithm with other gradient-based algorithms, such as gradient descent, RMSProp, Adagrad, momentum, and Adam on the well-known Modified National Institute of Standards and Technology (MNIST) data set for handwritten digit recognition by implementing deep convolutional neural networks. Furthermore, we present empirical evaluations of EVGO on the CIFAR-10 and CIFAR-100 data sets by using the well-known AlexNet and ResNet architectures. Finally, we implement an empirical analysis for EVGO and other algorithms to investigate the behavior of the loss functions. The results show that EVGO outperforms all the algorithms in comparison for all experiments. We conclude that EVGO can be used effectively in the optimization of DNNs, and also, the proposed hyperplane may provide a basis for future optimization algorithms.
dc.language.isoeng
dc.subjectMühendislik ve Teknoloji
dc.subjectYapay Zeka, Bilgisayarda Öğrenme ve Örüntü Tanıma
dc.subjectAlgoritmalar
dc.subjectBilgisayar Bilimleri
dc.subjectBİLGİSAYAR BİLİMİ, YAPAY ZEKA
dc.subjectBilgisayar Bilimi
dc.subjectMühendislik, Bilişim ve Teknoloji (ENG)
dc.titleA Novel Learning Algorithm to Optimize Deep Neural Networks: Evolved Gradient Direction Optimizer (EVGO)
dc.typeMakale
dc.relation.journalIEEE Transactions On Neural Networks And Learning Systems
dc.contributor.departmentKırklareli Üniversitesi , İktisadi Ve İdari Bilimler Fakültesi , Ekonometri Bölümü
dc.identifier.volume31
dc.identifier.startpage1
dc.identifier.endpage10
dc.contributor.firstauthorID837559


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster