Show simple item record

dc.contributor.authorCirpan, HA
dc.contributor.authorTsatsanis, MK
dc.date.accessioned2021-03-03T18:25:09Z
dc.date.available2021-03-03T18:25:09Z
dc.identifier.citationCirpan H., Tsatsanis M., "Stochastic maximum likelihood methods for semi-blind channel equalization", 31st Asilomar Conference on Signals, Systems and Computers, California, Amerika Birleşik Devletleri, 2 - 05 Kasım 1997, ss.1629-1632
dc.identifier.othervv_1032021
dc.identifier.otherav_4ee6b6e5-0158-4861-be04-b14d5105bdb5
dc.identifier.urihttp://hdl.handle.net/20.500.12627/56335
dc.description.abstractIn this paper, a blind stochastic maximum likelihood channel equalization algorithm is adapted to incorporate a known training sequence as part of the transmitted frame. A Hidden Markov Model formulation of the problem is introduced and the Baum-Welch algorithm is modified to provide a computationally efficient solution to the resulting optimization problem. The proposed method provides a unified framework for semi-blind channel estimation, which exploits information from both the training and the blind part of the received data record. The performance of the maximum likelihood estimator is studied, based on the evaluation of Cramer-Rao bounds. Finally, some simulation results are presented.
dc.language.isoeng
dc.subjectMühendislik
dc.subjectTELEKOMÜNİKASYON
dc.subjectBilgi Sistemleri, Haberleşme ve Kontrol Mühendisliği
dc.subjectSinyal İşleme
dc.subjectBilgisayar Bilimleri
dc.subjectBİLGİSAYAR BİLİMİ, BİLGİ SİSTEMLERİ
dc.subjectBiyoenformatik
dc.subjectMühendislik ve Teknoloji
dc.subjectBilgi Güvenliği ve Güvenilirliği
dc.subjectBilgisayar Bilimi
dc.subjectMühendislik, Bilişim ve Teknoloji (ENG)
dc.subjectBİLGİSAYAR BİLİMİ, TEORİ VE YÖNTEM
dc.subjectMÜHENDİSLİK, ELEKTRİK VE ELEKTRONİK
dc.titleStochastic maximum likelihood methods for semi-blind channel equalization
dc.typeBildiri
dc.contributor.department, ,
dc.contributor.firstauthorID120095


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record