Applying Web Usage Mining for the Analysis of Web Log Files
Özet
Günümüzde veri artışı inanılmaz boyutlara ulaşmıştır. Gelişen teknolojiyle birçok farklı sektörde daha kolay veri elde edilebilmektedir. Bu noktada veri madenciliği bu veri yığınlarından anlamlı bilgiye dönüşüm sürecini hızlandırmıştır. Veri madenciliği, ilk başta veri tabanlarından bilgi çıkarımı olarak ortaya çıksa da günümüzde geliştirilen yeni yöntemler ve teknolojilerin desteği ile tahmin gücünden daha fazla yararlanılmaktadır. Çalışmada veri madenciliği sınıflandırma yöntemlerinden destek vektör makineleri, web kullanım madenciliği verisi olan web günlük dosyaları üzerine uygulanmıştır. Kullanılan veri seti bir e-ticaret sitesinin 812 güne ait web günlük dosyalarıdır. Web günlük dosyaları yapılandırılmamış veri içermektedir ve bu tip verinin analizi yapılandırılmış veriye göre daha zordur. Bu nedenle analiz öncesinde verinin temizlenmesi gerekmiş ve bu süreç çalışmada uzun bir süre almıştır. Çalışmada satın alma davranışının eğilimini belirlemek hedeflenmiştir. Destek vektör makineleriyle sınıflandırma yapılmış sonuçlar lojistik regresyonla elde edilen sonuçlarla karşılaştırılmıştır. Destek vektör makineleri ile bir e-ticaret sitesi uygulamasında daha doğru sınıflandırma yapılabildiği görülmüştür.
Bağlantı
http://hdl.handle.net/20.500.12627/56712http://www.journals.istanbul.edu.tr/iuisletme/article/view/5000193565
Koleksiyonlar
- Makale [92796]