Basit öğe kaydını göster

dc.contributor.authorKirisci, Murat
dc.date.accessioned2021-03-03T18:37:54Z
dc.date.available2021-03-03T18:37:54Z
dc.date.issued2019
dc.identifier.citationKirisci M., "Comparison of artificial neural network and logistic regression model for factors affecting birth weight", SN APPLIED SCIENCES, cilt.1, sa.4, 2019
dc.identifier.otherav_501f555e-23f1-4741-890b-a3c045034564
dc.identifier.othervv_1032021
dc.identifier.urihttp://hdl.handle.net/20.500.12627/57072
dc.identifier.urihttps://doi.org/10.1007/s42452-019-0391-x
dc.description.abstractThe aim of this work compares the ANN and logistic regression analysis to determine the factors affecting birth weight. This study included 223 newborn babies. The records of babies born between January 2017 and December 2017 were used. The data were obtained from Beykoz district of Istanbul. ANN and logistic regression analysis of the method obtained based on these records were evaluated. Logistic regression revealed the items GB, MA, GA, NH, BMI, MPPW, MWGP, MsAU, MsCU, MsE as significant factors for BW.The area under the receiver operating characteristic (AuROC) curve 0.941 (SD = 0.0012) for ANN and 0.909 (SD = 0.019) for Logistic Regression model.The ANNs may be trained with data acquired in various contexts and can consider local expertise, differences, and other variables with uncertain effects on outcome. Although the ANN value is greater than the LR value, these results are very close to each other.This shows us that in terms of their classification ability, these two methods are approximately equal to each other.The results we have seen in our study show that in the medical diagnosis, neither model can change the other. Both models can be used as a complement to help with decision-making. Both models have the potential to help physicians with respect to understanding BW risk factors, risk estimation.
dc.language.isoeng
dc.subjectDoğa Bilimleri Genel
dc.subjectÇOK DİSİPLİNLİ BİLİMLER
dc.subjectTemel Bilimler (SCI)
dc.subjectTemel Bilimler
dc.titleComparison of artificial neural network and logistic regression model for factors affecting birth weight
dc.typeMakale
dc.relation.journalSN APPLIED SCIENCES
dc.contributor.departmentİstanbul Üniversitesi , Hasan Ali Yücel Eğitim Fakültes , Matematik Ve Fen Bilimleri
dc.identifier.volume1
dc.identifier.issue4
dc.contributor.firstauthorID67598


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster