Show simple item record

dc.contributor.authorAli, M. Syed
dc.contributor.authorArslan, Emel
dc.contributor.authorArik, Sabri
dc.contributor.authorVadivel, R.
dc.date.accessioned2021-03-03T18:51:03Z
dc.date.available2021-03-03T18:51:03Z
dc.identifier.citationArslan E., Vadivel R., Ali M. S. , Arik S., "Event-triggered H-infinity filtering for delayed neural networks via sampled-data", NEURAL NETWORKS, cilt.91, ss.11-21, 2017
dc.identifier.issn0893-6080
dc.identifier.othervv_1032021
dc.identifier.otherav_515c30e0-7954-46da-8ede-3ee30b371317
dc.identifier.urihttp://hdl.handle.net/20.500.12627/57843
dc.identifier.urihttps://doi.org/10.1016/j.neunet.2017.03.013
dc.description.abstractThis paper is concerned with event-triggered H-infinity filtering for delayed neural networks via sampled data. A novel event-triggered scheme is proposed, which can lead to a significant reduction of the information communication burden in the network; the feature of this scheme is that whether or not the sampled data should be transmitted is determined by the current sampled data and the error between the current sampled data and the latest transmitted data. By constructing a proper Lyapunov-Krasovskii functional, utilizing the reciprocally convex combination technique and Jensen's inequality sufficient conditions are derived to ensure that the resultant filtering error system is asymptotically stable. Based on the derived H-infinity performance analysis results, the H-infinity filter design is formulated in terms of Linear Matrix Inequalities (LMIs). Finally, the proposed stability conditions are demonstrated with numerical example. (C) 2017 Elsevier Ltd. All rights reserved.
dc.language.isoeng
dc.subjectAlgoritmalar
dc.subjectYaşam Bilimleri
dc.subjectTemel Bilimler
dc.subjectMühendislik ve Teknoloji
dc.subjectYaşam Bilimleri (LIFE)
dc.subjectBilgisayar Bilimleri
dc.subjectSinirbilim ve Davranış
dc.subjectNEUROSCIENCES
dc.subjectMühendislik, Bilişim ve Teknoloji (ENG)
dc.subjectBilgisayar Bilimi
dc.subjectBİLGİSAYAR BİLİMİ, YAPAY ZEKA
dc.titleEvent-triggered H-infinity filtering for delayed neural networks via sampled-data
dc.typeMakale
dc.relation.journalNEURAL NETWORKS
dc.contributor.departmentThiruvalluvar Univ , ,
dc.identifier.volume91
dc.identifier.startpage11
dc.identifier.endpage21
dc.contributor.firstauthorID244000


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record