Show simple item record

dc.contributor.authorSahin, Ulku
dc.contributor.authorBayat, Cuma
dc.contributor.authorUcan, O. Nuri
dc.contributor.authorOzcan, Hüseyin Kurtuluş
dc.contributor.authorBilgil, Erdem
dc.date.accessioned2021-03-04T08:17:12Z
dc.date.available2021-03-04T08:17:12Z
dc.date.issued2007
dc.identifier.citationOzcan H. K. , Bilgil E., Sahin U., Ucan O. N. , Bayat C., "Modeling of trophospheric ozone concentrations using genetically trained multi-level cellular neural networks", ADVANCES IN ATMOSPHERIC SCIENCES, cilt.24, sa.5, ss.907-914, 2007
dc.identifier.issn0256-1530
dc.identifier.otherav_628ec7ff-8b29-4c21-9a0f-4a7b0c6f2447
dc.identifier.othervv_1032021
dc.identifier.urihttp://hdl.handle.net/20.500.12627/68640
dc.identifier.urihttps://doi.org/10.1007/s00376-007-0907-y
dc.description.abstractTropospheric ozone concentrations, which are an important air pollutant, are modeled by the use of an artificial intelligence structure. Data obtained from air pollution measurement stations in the city of Istanbul are utilized in constituting the model. A supervised algorithm for the evaluation of ozone concentration using a genetically trained multi-level cellular neural network (ML-CNN) is introduced, developed, and applied to real data. A genetic algorithm is used in the optimization of CNN templates. The model results and the actual measurement results are compared and statistically evaluated. It is observed that seasonal changes in ozone concentrations are reflected effectively by the concentrations estimated by the multilevel-CNN model structure, with a correlation value of 0.57 ascertained between actual and model results. It is shown that the multilevel-CNN modeling technique is as satisfactory as other modeling techniques in associating the data in a complex medium in air pollution applications.
dc.language.isoeng
dc.subjectTemel Bilimler (SCI)
dc.subjectMühendislik ve Teknoloji
dc.subjectMETEOROLOJİ VE ATMOSFER BİLİMLERİ
dc.subjectYerbilimleri
dc.subjectAtmosfer Bilimleri ve Meteoroloji Mühendisliği
dc.titleModeling of trophospheric ozone concentrations using genetically trained multi-level cellular neural networks
dc.typeMakale
dc.relation.journalADVANCES IN ATMOSPHERIC SCIENCES
dc.contributor.department, ,
dc.identifier.volume24
dc.identifier.issue5
dc.identifier.startpage907
dc.identifier.endpage914
dc.contributor.firstauthorID77365


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record