dc.contributor.author | Malyutin, K. G. | |
dc.contributor.author | Sadik, N. | |
dc.date.accessioned | 2021-03-04T08:42:32Z | |
dc.date.available | 2021-03-04T08:42:32Z | |
dc.identifier.citation | Malyutin K. G. , Sadik N., "Representation of subharmonic functions in a half-plane", SBORNIK MATHEMATICS, cilt.198, ss.1747-1761, 2007 | |
dc.identifier.issn | 1064-5616 | |
dc.identifier.other | vv_1032021 | |
dc.identifier.other | av_649bbea4-2fc9-440c-a4b4-626a1d669e7c | |
dc.identifier.uri | http://hdl.handle.net/20.500.12627/70014 | |
dc.identifier.uri | https://doi.org/10.1070/sm2007v198n12abeh003904 | |
dc.description.abstract | The theory of subharmonic functions of finite order is based to a considerable extent on integral formulae. In the present paper representations are obtained for subharmonic functions in the upper half-plane with more general growth gamma(r) than finite order. The main result can be stated as follows. Let gamma(r) be a growth function such that either In gamma(r) is a convex function of In r or the lower order of gamma(r) is infinite. Then for each proper subharmonic function v of growth gamma(r) there exist an unbounded set R of positive numbers and a family {u(R) : R is an element of R} of proper subharmonic functions in the upper half-plane C+ such that | |
dc.language.iso | eng | |
dc.subject | Matematik | |
dc.subject | Temel Bilimler (SCI) | |
dc.title | Representation of subharmonic functions in a half-plane | |
dc.type | Makale | |
dc.relation.journal | SBORNIK MATHEMATICS | |
dc.contributor.department | VN Karazin Kharkiv National University , , | |
dc.identifier.volume | 198 | |
dc.identifier.startpage | 1747 | |
dc.identifier.endpage | 1761 | |
dc.contributor.firstauthorID | 185152 | |