Basit öğe kaydını göster

dc.contributor.authorPuttemans, Steven
dc.contributor.authorErgun, Can
dc.contributor.authorGoedeme, Toon
dc.date.accessioned2021-03-04T08:42:57Z
dc.date.available2021-03-04T08:42:57Z
dc.identifier.citationPuttemans S., Ergun C., Goedeme T., "Improving Open Source Face Detection by Combining an Adapted Cascade Classification Pipeline and Active Learning", 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP), Porto, Portekiz, 27 Şubat - 01 Mart 2017, ss.396-404
dc.identifier.othervv_1032021
dc.identifier.otherav_64ab1680-6190-482e-850f-55b45bd590ee
dc.identifier.urihttp://hdl.handle.net/20.500.12627/70041
dc.identifier.urihttps://doi.org/10.5220/0006256003960404
dc.description.abstractComputer vision has almost solved the issue of in the wild face detection, using complex techniques like convolutional neural networks. On the contrary many open source computer vision frameworks like OpenCV have not yet made the switch to these complex techniques and tend to depend on well established algorithms for face detection, like the cascade classification pipeline suggested by Viola and Jones. The accuracy of these basic face detectors on public datasets like FDDB stays rather low, mainly due to the high number of false positive detections. We propose several adaptations to the current existing face detection model training pipeline of OpenCV. We improve the training sample generation and annotation procedure, and apply an active learning strategy. These boost the accuracy of in the wild face detection on the FDDB dataset drastically, closing the gap towards the accuracy gained by CNN-based face detectors. The proposed changes allow us to provide an improved face detection model to OpenCV, achieving a remarkably high precision at an acceptable recall, two critical requirements for further processing pipelines like person identification, etc.
dc.language.isoeng
dc.subjectKlinik Tıp (MED)
dc.subjectTıp
dc.subjectSağlık Bilimleri
dc.subjectBilgisayar Bilimleri
dc.subjectAlgoritmalar
dc.subjectBilgisayar Bilimi
dc.subjectVeritabanı ve Veri Yapıları
dc.subjectMühendislik ve Teknoloji
dc.subjectBİLGİSAYAR BİLİMİ, YAPAY ZEKA
dc.subjectKlinik Tıp
dc.subjectGÖRÜNTÜLEME BİLİMİ VE FOTOĞRAF TEKNOLOJİSİ
dc.subjectBİLGİSAYAR BİLİMİ, YAZILIM MÜHENDİSLİĞİ
dc.subjectMühendislik, Bilişim ve Teknoloji (ENG)
dc.titleImproving Open Source Face Detection by Combining an Adapted Cascade Classification Pipeline and Active Learning
dc.typeBildiri
dc.contributor.departmentKU Leuven , ,
dc.contributor.firstauthorID150656


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster