dc.contributor.author | Vrancken, Luc | |
dc.contributor.author | Yildirim, Handan | |
dc.date.accessioned | 2021-03-04T09:28:08Z | |
dc.date.available | 2021-03-04T09:28:08Z | |
dc.date.issued | 2017 | |
dc.identifier.citation | Yildirim H., Vrancken L., "delta(#)(2;2)-Ideal Centroaffine Hypersurfaces of Dimension 5", TAIWANESE JOURNAL OF MATHEMATICS, cilt.21, sa.2, ss.283-304, 2017 | |
dc.identifier.issn | 1027-5487 | |
dc.identifier.other | vv_1032021 | |
dc.identifier.other | av_68656be7-3f7d-4f07-ae9d-1b6a76b35564 | |
dc.identifier.uri | http://hdl.handle.net/20.500.12627/72360 | |
dc.identifier.uri | https://doi.org/10.11650/tjm/7809 | |
dc.description.abstract | The notion of an ideal submanifold was introduced by Chen at the end of the last century. A survey of recent results in this area can be found in his book [9]. Recently, in [10], an optimal collection of Chen's inequalities was obtained for Lagrangian submanifolds in complex space forms. As shown in [2], these inequalities have an immediate counterpart in centroaffine diff erential geometry. Centroaffine hypersurfaces realising the equality in one of these inequalities are called ideal centroaffine hypersurfaces. | |
dc.language.iso | eng | |
dc.subject | Temel Bilimler (SCI) | |
dc.subject | Matematik | |
dc.title | delta(#)(2;2)-Ideal Centroaffine Hypersurfaces of Dimension 5 | |
dc.type | Makale | |
dc.relation.journal | TAIWANESE JOURNAL OF MATHEMATICS | |
dc.contributor.department | Université De Valenciennes Et Du Hainaut-Cambrésis , , | |
dc.identifier.volume | 21 | |
dc.identifier.issue | 2 | |
dc.identifier.startpage | 283 | |
dc.identifier.endpage | 304 | |
dc.contributor.firstauthorID | 239189 | |