Basit öğe kaydını göster

dc.contributor.authorPashaei, Elnaz
dc.contributor.authorOzen, Mustafa
dc.contributor.authorAYDIN, Nizamettin
dc.date.accessioned2021-03-04T09:44:57Z
dc.date.available2021-03-04T09:44:57Z
dc.identifier.citationPashaei E., Ozen M., AYDIN N., "Improving Medical Diagnosis Reliability Using Boosted C5.0 Decision Tree empowered by Particle Swarm Optimization", 37th Annual International Conference of the IEEE-Engineering-in-Medicine-and-Biology-Society (EMBC), Milan, İtalya, 25 - 29 Ağustos 2015, ss.7230-7233
dc.identifier.othervv_1032021
dc.identifier.otherav_69c1a596-d43a-4098-b679-7bc4267a82b8
dc.identifier.urihttp://hdl.handle.net/20.500.12627/73244
dc.identifier.urihttps://doi.org/10.1109/embc.2015.7320060
dc.description.abstractImproving accuracy of supervised classification algorithms in biomedical applications is one of active area of research. In this study, we improve the performance of Particle Swarm Optimization (PSO) combined with C4.5 decision tree (PSO+C4.5) classifier by applying Boosted C5.0 decision tree as the fitness function. To evaluate the effectiveness of our proposed method, it is implemented on 1 microarray dataset and 5 different medical data sets obtained from UCI machine learning databases. Moreover, the results of PSO + Boosted C5.0 implementation are compared to eight well-known benchmark classification methods (PSO+C4.5, support vector machine under the kernel of Radial Basis Function, Classification And Regression Tree (CART), C4.5 decision tree, C5.0 decision tree, Boosted C5.0 decision tree, Naive Bayes and Weighted K-Nearest neighbor). Repeated five-fold cross-validation method was used to justify the performance of classifiers. Experimental results show that our proposed method not only improve the performance of PSO+C4.5 but also obtains higher classification accuracy compared to the other classification methods.
dc.language.isoeng
dc.subjectBiyomedikal Mühendisliği
dc.subjectMühendislik ve Teknoloji
dc.subjectMÜHENDİSLİK, ELEKTRİK VE ELEKTRONİK
dc.subjectBilgi Sistemleri, Haberleşme ve Kontrol Mühendisliği
dc.subjectMühendislik, Bilişim ve Teknoloji (ENG)
dc.subjectSinyal İşleme
dc.subjectMühendislik
dc.subjectMÜHENDİSLİK, BİYOMEDİKSEL
dc.titleImproving Medical Diagnosis Reliability Using Boosted C5.0 Decision Tree empowered by Particle Swarm Optimization
dc.typeBildiri
dc.contributor.departmentYıldız Teknik Üniversitesi , ,
dc.contributor.firstauthorID145793


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster