Basit öğe kaydını göster

dc.contributor.authorSari, Pelin
dc.contributor.authorYarman, Siddik
dc.contributor.authorAksoy, Turker Togay
dc.contributor.authorGokbay, Inci Zaim
dc.contributor.authorZileli, Zeynep Beyza
dc.date.accessioned2021-03-04T09:56:04Z
dc.date.available2021-03-04T09:56:04Z
dc.date.issued2019
dc.identifier.citationGokbay I. Z. , Zileli Z. B. , Sari P., Aksoy T. T. , Yarman S., "A Linear Stochastic System Approach to Model Symptom Based Clinical Decision Support Tool for the Early Diagnosis for Psoriasis, Seborrheic Dermatitis, Rosacea and Chronic Dermatitis", ELECTRICA, cilt.19, sa.1, ss.48-58, 2019
dc.identifier.othervv_1032021
dc.identifier.otherav_6aa118bf-bf69-420f-8826-83c1cd760845
dc.identifier.urihttp://hdl.handle.net/20.500.12627/73780
dc.identifier.urihttps://doi.org/10.26650/electrica.2018.081118
dc.description.abstractPrediction models provide the probability of an event. These models can be used to predict disease's outcomes, reccurencies after treatments. This paper presents an expert system called Symptom Based Clinical Decision Support Tool (SBCDST) for early diagnosis of erythemato-squamous diseases incorporating decisions made by Bayesian classification algorithm. This tool enables family practitioners to differentiate four types of erythemato-squamous diseases using clinical parameters obtained from a patient. In SBCDST, Psoriasis, Seborrheic Dermatitis, Rosacea and Chronic dermatitis diseases are described by means of well-classified set of attributes. Attributes are generated from the typical sign and symptoms of disorder. Based on our clinical results, tool yields 72%, 93%, 89% and 95% correct decisions on the selected dermatology diseases respectively. System proposed will provide the opportunity for early diagnosis for the patient and the expert medical doctor to take the necessary preventive measures to treat the disease; and avoid malpractice which may cause irreversible health damages.
dc.language.isoeng
dc.subjectBilgi Sistemleri, Haberleşme ve Kontrol Mühendisliği
dc.subjectSinyal İşleme
dc.subjectMühendislik ve Teknoloji
dc.subjectMühendislik, Bilişim ve Teknoloji (ENG)
dc.subjectMühendislik
dc.subjectMÜHENDİSLİK, ELEKTRİK VE ELEKTRONİK
dc.titleA Linear Stochastic System Approach to Model Symptom Based Clinical Decision Support Tool for the Early Diagnosis for Psoriasis, Seborrheic Dermatitis, Rosacea and Chronic Dermatitis
dc.typeMakale
dc.relation.journalELECTRICA
dc.contributor.departmentİstanbul Üniversitesi-Cerrahpaşa , ,
dc.identifier.volume19
dc.identifier.issue1
dc.identifier.startpage48
dc.identifier.endpage58
dc.contributor.firstauthorID260632


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster