Show simple item record

dc.contributor.authorKaret, FE
dc.contributor.authorGainza, FJ
dc.contributor.authorGyory, AZ
dc.contributor.authorAlpay, H
dc.contributor.authorSantos, F
dc.contributor.authorHulton, SA
dc.contributor.authorBakkaloglu, A
dc.contributor.authorOzen, S
dc.contributor.authorCunningham, MJ
dc.contributor.authordi Pietro, A
dc.contributor.authorWalker, WG
dc.contributor.authorLifton, RP
dc.contributor.authorUnwin, RJ
dc.contributor.authorWrong, O
dc.contributor.authorTanner, MJA
dc.contributor.authorNayir, A
dc.date.accessioned2021-03-04T11:03:39Z
dc.date.available2021-03-04T11:03:39Z
dc.date.issued1998
dc.identifier.citationKaret F., Gainza F., Gyory A., Unwin R., Wrong O., Tanner M., Nayir A., Alpay H., Santos F., Hulton S., et al., "Mutations in the chloride-bicarbonate exchanger gene AE1 cause autosomal dominant but not autosomal recessive distal renal tubular acidosis", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, cilt.95, sa.11, ss.6337-6342, 1998
dc.identifier.issn0027-8424
dc.identifier.othervv_1032021
dc.identifier.otherav_705fa76a-406f-47f4-9c48-abf75a1e9aaa
dc.identifier.urihttp://hdl.handle.net/20.500.12627/77460
dc.identifier.urihttps://doi.org/10.1073/pnas.95.11.6337
dc.description.abstractPrimary distal renal tubular acidosis (dRTA) is characterized by reduced ability to acidify urine, variable hyperchloremic hypokalemic metabolic acidosis, nephrocalcinosis, and nephrolithiasis. Kindreds showing either autosomal dominant or recessive transmission are described. Mutations in the chloride-bicarbonate exchanger AE1 have recently been reported in four autosomal dominant dRTA kindreds, three of these altering codon Arg589. We have screened 26 kindreds with primary dRTA for mutations in AE1. Inheritance was autosomal recessive in seventeen kindreds, autosomal dominant in one, and uncertain due to unknown parental phenotype or sporadic disease in eight kindreds. No mutations in AE1 were detected in any of the autosomal recessive kindreds, and analysis of linkage showed no evidence of linkage of recessive dRTA to AE1. In contrast, heterozygous mutations in AE1 were identified in the one known dominant dRTA kindred, in one sporadic case, and one kindred with two affected brothers. In the dominant kindred, the mutation Arg-589/Ser cosegregated with dRTA in the extended pedigree. An Arg-589/His mutation in the sporadic case proved to be a de novo mutation. In the third kindred, affected brothers both have an intragenic 13-bp duplication resulting in deletion of the last 11 amino acids of AE1. These mutations were not detected in 80 alleles from unrelated normal individuals. These findings underscore the key role of Arg-589 and the C terminus in normal AE1 function, and indicate that while mutations in AE1 cause autosomal dominant dRTA, defects in this gene are not responsible for recessive disease.
dc.language.isoeng
dc.subjectDoğa Bilimleri Genel
dc.subjectTemel Bilimler
dc.subjectÇOK DİSİPLİNLİ BİLİMLER
dc.subjectTemel Bilimler (SCI)
dc.titleMutations in the chloride-bicarbonate exchanger gene AE1 cause autosomal dominant but not autosomal recessive distal renal tubular acidosis
dc.typeMakale
dc.relation.journalPROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
dc.contributor.department, ,
dc.identifier.volume95
dc.identifier.issue11
dc.identifier.startpage6337
dc.identifier.endpage6342
dc.contributor.firstauthorID120791


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record