Basit öğe kaydını göster

dc.contributor.authorAkinci, Eylem Deniz
dc.contributor.authorAkbilgic, Oğuz
dc.date.accessioned2021-03-04T11:15:10Z
dc.date.available2021-03-04T11:15:10Z
dc.date.issued2009
dc.identifier.citationAkbilgic O., Akinci E. D. , "A Novel Regression Approach: Least Squares Ratio", COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, cilt.38, sa.9, ss.1539-1545, 2009
dc.identifier.issn0361-0926
dc.identifier.otherav_716412cf-92d7-4611-a69e-050e1c5026cf
dc.identifier.othervv_1032021
dc.identifier.urihttp://hdl.handle.net/20.500.12627/78112
dc.identifier.urihttps://doi.org/10.1080/03610920802455076
dc.description.abstractRegression Analysis (RA) is one of the frequently used tool for forecasting. The Ordinary Least Squares (OLS) Technique is the basic instrument of RA and there are many regression techniques based on OLS. This paper includes a new regression approach, called Least Squares Ratio (LSR), and comparison of OLS and LSR according to mean square errors of estimation of theoretical regression parameters (mse ss) and dependent value (mse y).
dc.language.isoeng
dc.subjectİSTATİSTİK & OLASILIK
dc.subjectMatematik
dc.subjectTemel Bilimler (SCI)
dc.titleA Novel Regression Approach: Least Squares Ratio
dc.typeMakale
dc.relation.journalCOMMUNICATIONS IN STATISTICS-THEORY AND METHODS
dc.contributor.departmentMimar Sinan Güzel Sanatlar Üniversitesi , ,
dc.identifier.volume38
dc.identifier.issue9
dc.identifier.startpage1539
dc.identifier.endpage1545
dc.contributor.firstauthorID82545


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster