Basit öğe kaydını göster

dc.contributor.authorÖztürk, Huseyin
dc.contributor.authorERDAL, Halil İbrahim
dc.contributor.authorNamli, Ersin
dc.date.accessioned2021-03-02T20:50:06Z
dc.date.available2021-03-02T20:50:06Z
dc.date.issued2016
dc.identifier.citationÖztürk H., Namli E., ERDAL H. İ. , "Reducing Overreliance on Sovereign Credit Ratings: Which Model Serves Better?", COMPUTATIONAL ECONOMICS, cilt.48, sa.1, ss.59-81, 2016
dc.identifier.issn0927-7099
dc.identifier.otherav_03f0ecf4-ddda-4376-82ed-3c3006271000
dc.identifier.othervv_1032021
dc.identifier.urihttp://hdl.handle.net/20.500.12627/8584
dc.identifier.urihttps://doi.org/10.1007/s10614-015-9534-3
dc.description.abstractSovereign credit ratings have been a controversial issue since the outbreak of the 2008 financial crisis. Among the debates the inaccuracies stay at the centre. By employing classification and regression trees, multilayer perceptron, support vector machines (SVM), Bayes net, and naive Bayes; we compare the ability of various learning techniques with the conventional statistical method in predicting sovereign credit ratings. Experimental results suggest that all the techniques excluding SVM have over 90 % accurate prediction. According to within one and two notch accurate prediction measure, the prediction performance of SVM also increases above 90 %. These findings indicate a clear outperformance of AI methods over the conventional statistical method. The results have many implications for the practitioners in credit scoring industry. Amidst the regulatory measures that encourage individual credit scoring for international financial institutions, these findings suggest that up-to-date AI methods serve quite reliable technical tools to predict sovereign credit ratings.
dc.language.isoeng
dc.subjectİktisat
dc.subjectÇalışma Ekonomisi ve Endüstri ilişkileri
dc.subjectYönetim ve Çalışma Psikolojisi
dc.subjectMatematik
dc.subjectSosyal ve Beşeri Bilimler
dc.subjectTemel Bilimler (SCI)
dc.subjectMATEMATİK, İNTERDİSKÜP UYGULAMALAR
dc.subjectYÖNETİM
dc.subjectSosyal Bilimler (SOC)
dc.subjectEkonomi ve İş
dc.subjectEKONOMİ
dc.titleReducing Overreliance on Sovereign Credit Ratings: Which Model Serves Better?
dc.typeMakale
dc.relation.journalCOMPUTATIONAL ECONOMICS
dc.contributor.departmentCentral Bank of the Republic of Turkey , ,
dc.identifier.volume48
dc.identifier.issue1
dc.identifier.startpage59
dc.identifier.endpage81
dc.contributor.firstauthorID77297


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster