Basit öğe kaydını göster

dc.contributor.authorGorgel, Pelin
dc.contributor.authorUcan, Osman N.
dc.contributor.authorSertbas, Ahmet
dc.date.accessioned2021-03-04T13:56:47Z
dc.date.available2021-03-04T13:56:47Z
dc.date.issued2013
dc.identifier.citationGorgel P., Sertbas A., Ucan O. N. , "Mammographical mass detection and classification using Local Seed Region Growing-Spherical Wavelet Transform (LSRG-SWT) hybrid scheme", COMPUTERS IN BIOLOGY AND MEDICINE, cilt.43, sa.6, ss.765-774, 2013
dc.identifier.issn0010-4825
dc.identifier.othervv_1032021
dc.identifier.otherav_7efcd25a-e465-4fe0-8634-4abb88d0d878
dc.identifier.urihttp://hdl.handle.net/20.500.12627/86678
dc.identifier.urihttps://doi.org/10.1016/j.compbiomed.2013.03.008
dc.description.abstractThe purpose of this study is to implement accurate methods of detection and classification of benign and malignant breast masses in mammograms. Our new proposed method, which can be used as a diagnostic tool, is denoted Local Seed Region Growing-Spherical Wavelet Transform (LSRG-SWT), and consists of four steps. The first step is homomorphic filtering for enhancement, and the second is detection of the region of interests (ROIs) using a Local Seed Region Growing (LSRG) algorithm, which we developed. The third step incoporates Spherical Wavelet Transform (SWT) and feature extraction. Finally the fourth step is classification, which consists of two sequential components: the 1st classification distinguishes the ROIs as either mass or non-mass and the 2nd classification distinguishes the masses as either benign or malignant using a Support Vector Machine (SVM). The mammograms used in this study were acquired from the hospital of Istanbul University (I.U.) in Turkey and the Mammographic Image Analysis Society (MIAS). The results demonstrate that the proposed scheme LSRG-SWT achieves 96% and 93.59% accuracy in mass/non-mass classification (1st component) and benign/malignant classification (2nd component) respectively when using the I.U. database with k-fold cross validation. The system achieves 94% and 91.67% accuracy in mass/non-mass classification and benign/malignant classification respectively when using the I.U. database as a training set and the MIAS database as a test set with external validation. (C) 2013 Elsevier Ltd. All rights reserved.
dc.language.isoeng
dc.subjectBilgisayar Grafiği
dc.subjectBiyomedikal Mühendisliği
dc.subjectYaşam Bilimleri
dc.subjectBiyoinformatik
dc.subjectBİYOLOJİ
dc.subjectBiyoloji ve Biyokimya
dc.subjectYaşam Bilimleri (LIFE)
dc.subjectBİLGİSAYAR BİLİMİ, İNTERDİSİPLİNER UYGULAMALAR
dc.subjectBilgisayar Bilimi
dc.subjectMühendislik, Bilişim ve Teknoloji (ENG)
dc.subjectMÜHENDİSLİK, BİYOMEDİKSEL
dc.subjectMühendislik
dc.subjectMATEMATİKSEL VE ​​BİLGİSAYAR BİYOLOJİSİ
dc.subjectTıp
dc.subjectSağlık Bilimleri
dc.subjectTemel Tıp Bilimleri
dc.subjectBiyokimya
dc.subjectTıbbi Biyoloji
dc.subjectBilgisayar Bilimleri
dc.subjectTemel Bilimler
dc.subjectMühendislik ve Teknoloji
dc.titleMammographical mass detection and classification using Local Seed Region Growing-Spherical Wavelet Transform (LSRG-SWT) hybrid scheme
dc.typeMakale
dc.relation.journalCOMPUTERS IN BIOLOGY AND MEDICINE
dc.contributor.departmentİstanbul Aydın Üniversitesi , ,
dc.identifier.volume43
dc.identifier.issue6
dc.identifier.startpage765
dc.identifier.endpage774
dc.contributor.firstauthorID49655


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster