Show simple item record

dc.contributor.authorSINGH, Sagar
dc.contributor.authorKanli, Ali İsmet
dc.contributor.authorSevgen, Selcuk
dc.date.accessioned2021-03-02T20:53:16Z
dc.date.available2021-03-02T20:53:16Z
dc.date.issued2016
dc.identifier.citationSINGH S., Kanli A. İ. , Sevgen S., "A general approach for porosity estimation using artificial neural network method: a case study from Kansas gas field", STUDIA GEOPHYSICA ET GEODAETICA, cilt.60, sa.1, ss.130-140, 2016
dc.identifier.issn0039-3169
dc.identifier.otherav_042f5f08-78d0-4e50-86a1-f51055c93e24
dc.identifier.othervv_1032021
dc.identifier.urihttp://hdl.handle.net/20.500.12627/8752
dc.identifier.urihttps://doi.org/10.1007/s11200-015-0820-2
dc.description.abstractThis study aims to design a back-propagation artificial neural network (BP-ANN) to estimate the reliable porosity values from the well log data taken from Kansas gas field in the USA. In order to estimate the porosity, a neural network approach is applied, which uses as input sonic, density and resistivity log data, which are known to affect the porosity. This network easily sets up a relationship between the input data and the output parameters without having prior knowledge of petrophysical properties, such as pore-fluid type or matrix material type. The results obtained from the empirical relationship are compared with those from the neural network and a good correlation is observed. Thus, the ANN technique could be used to predict the porosity from other well log data.
dc.language.isoeng
dc.subjectTemel Bilimler (SCI)
dc.subjectMühendislik ve Teknoloji
dc.subjectJEOKİMYA VE JEOFİZİK
dc.subjectYerbilimleri
dc.subjectJeofizik Mühendisliği
dc.titleA general approach for porosity estimation using artificial neural network method: a case study from Kansas gas field
dc.typeMakale
dc.relation.journalSTUDIA GEOPHYSICA ET GEODAETICA
dc.contributor.departmentIndian Institute of Technology System (IIT System) , ,
dc.identifier.volume60
dc.identifier.issue1
dc.identifier.startpage130
dc.identifier.endpage140
dc.contributor.firstauthorID59604


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record