dc.contributor.author | Spronk, Nico | |
dc.contributor.author | Oztop, Serap | |
dc.date.accessioned | 2021-03-04T14:39:04Z | |
dc.date.available | 2021-03-04T14:39:04Z | |
dc.date.issued | 2014 | |
dc.identifier.citation | Oztop S., Spronk N., "On Minimal and Maximal p-operator Space Structures", CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, cilt.57, sa.1, ss.166-177, 2014 | |
dc.identifier.issn | 0008-4395 | |
dc.identifier.other | av_82aab075-7b04-40d9-95a9-468edc5bba82 | |
dc.identifier.other | vv_1032021 | |
dc.identifier.uri | http://hdl.handle.net/20.500.12627/88990 | |
dc.identifier.uri | https://doi.org/10.4153/cmb-2012-030-7 | |
dc.description.abstract | We show that L-infinity(mu), in its capacity as multiplication operators on L-P(mu), is minimal as a p-operator space for a decomposable measure mu. We conclude that L-1(mu) has a certain maximal type p-operator space structure that facilitates computations with L-1(mu) and the projective tensor product. | |
dc.language.iso | eng | |
dc.subject | Matematik | |
dc.subject | Temel Bilimler (SCI) | |
dc.title | On Minimal and Maximal p-operator Space Structures | |
dc.type | Makale | |
dc.relation.journal | CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES | |
dc.contributor.department | University Of Waterloo , , | |
dc.identifier.volume | 57 | |
dc.identifier.issue | 1 | |
dc.identifier.startpage | 166 | |
dc.identifier.endpage | 177 | |
dc.contributor.firstauthorID | 58405 | |