Basit öğe kaydını göster

dc.contributor.authorDokur, Zumray
dc.contributor.authorDemiralp, Tamer
dc.contributor.authorIscan, Zafer
dc.date.accessioned2021-03-04T14:47:08Z
dc.date.available2021-03-04T14:47:08Z
dc.date.issued2011
dc.identifier.citationIscan Z., Dokur Z., Demiralp T., "Classification of electroencephalogram signals with combined time and frequency features", EXPERT SYSTEMS WITH APPLICATIONS, cilt.38, sa.8, ss.10499-10505, 2011
dc.identifier.issn0957-4174
dc.identifier.othervv_1032021
dc.identifier.otherav_8354fe72-6735-47b3-8769-82c6136db7b1
dc.identifier.urihttp://hdl.handle.net/20.500.12627/89401
dc.identifier.urihttps://doi.org/10.1016/j.eswa.2011.02.110
dc.description.abstractEpilepsy is a neurological disorder that causes people to have seizures and the main application field of electroencephalography. In this study, combined time and frequency features approach for the classification of healthy and epileptic electroencephalogram (EEG) signals is proposed. Features in the time domain are extracted using the cross correlation (CC) method. Features related to the frequency domain are extracted by calculating the power spectral density (PSD). In the study, these individual time and frequency features are considered to carry complementary information about the nature of the EEG itself. By using divergence analysis, distributions of the feature vectors in the feature space are quantitatively measured. As a result, using the combination rather than individual feature vectors is suggested for classification. In order to show the efficiency of this approach, first of all, the classification performances of the time and frequency based feature vectors in terms of overall accuracy are analyzed individually. Afterwards, the feature vectors obtained by the combination of the individual feature vectors are used in classification. The results achieved by different classifier structures are given. Obtained performances in the study are comparatively evaluated by the help of the other studies for the same dataset in advance. Results show that the combination of the features derived from cross correlation and PSD is very promising in discriminating between epileptic and healthy EEG segments. (C) 2011 Elsevier Ltd. All rights reserved.
dc.language.isoeng
dc.subjectSosyal ve Beşeri Bilimler
dc.subjectEkonometri
dc.subjectYöneylem
dc.subjectBilgi Sistemleri, Haberleşme ve Kontrol Mühendisliği
dc.subjectSinyal İşleme
dc.subjectBilgisayar Bilimleri
dc.subjectAlgoritmalar
dc.subjectMühendislik ve Teknoloji
dc.subjectOPERASYON ARAŞTIRMA VE YÖNETİM BİLİMİ
dc.subjectEkonomi ve İş
dc.subjectSosyal Bilimler (SOC)
dc.subjectMühendislik
dc.subjectMÜHENDİSLİK, ELEKTRİK VE ELEKTRONİK
dc.subjectMühendislik, Bilişim ve Teknoloji (ENG)
dc.subjectBilgisayar Bilimi
dc.subjectBİLGİSAYAR BİLİMİ, YAPAY ZEKA
dc.titleClassification of electroencephalogram signals with combined time and frequency features
dc.typeMakale
dc.relation.journalEXPERT SYSTEMS WITH APPLICATIONS
dc.contributor.departmentİstanbul Üniversitesi , ,
dc.identifier.volume38
dc.identifier.issue8
dc.identifier.startpage10499
dc.identifier.endpage10505
dc.contributor.firstauthorID39811


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster