dc.contributor.author | Ates, Ece | |
dc.contributor.author | Kocak, Burak | |
dc.contributor.author | Ulusan, Melis Baykara | |
dc.contributor.author | Durmaz, Emine Sebnem | |
dc.date.accessioned | 2021-03-04T15:00:38Z | |
dc.date.available | 2021-03-04T15:00:38Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | Kocak B., Durmaz E. S. , Ates E., Ulusan M. B. , "Radiogenomics in Clear Cell Renal Cell Carcinoma: Machine Learning-Based High-Dimensional Quantitative CT Texture Analysis in Predicting PBRM1 Mutation Status", AMERICAN JOURNAL OF ROENTGENOLOGY, cilt.212, sa.3, 2019 | |
dc.identifier.issn | 0361-803X | |
dc.identifier.other | vv_1032021 | |
dc.identifier.other | av_8488d628-a9d2-43ea-b1b7-d03df00b888f | |
dc.identifier.uri | http://hdl.handle.net/20.500.12627/90143 | |
dc.identifier.uri | https://doi.org/10.2214/ajr.18.20443 | |
dc.description.abstract | OBJECTIVE. The purpose of this study is to evaluate the potential value of machine learning (ML)-based high-dimensional quantitative CT texture analysis in predicting the mutation status of the gene encoding the protein polybromo-1 (PBRM1) in patients with clear cell renal cell carcinoma (RCC). | |
dc.language.iso | eng | |
dc.subject | RADYOLOJİ, NÜKLEER TIP ve MEDİKAL GÖRÜNTÜLEME | |
dc.subject | Klinik Tıp | |
dc.subject | Klinik Tıp (MED) | |
dc.subject | Tıp | |
dc.subject | Dahili Tıp Bilimleri | |
dc.subject | Sağlık Bilimleri | |
dc.subject | Nükleer Tıp | |
dc.title | Radiogenomics in Clear Cell Renal Cell Carcinoma: Machine Learning-Based High-Dimensional Quantitative CT Texture Analysis in Predicting PBRM1 Mutation Status | |
dc.type | Makale | |
dc.relation.journal | AMERICAN JOURNAL OF ROENTGENOLOGY | |
dc.contributor.department | İstanbul Üniversitesi , , | |
dc.identifier.volume | 212 | |
dc.identifier.issue | 3 | |
dc.contributor.firstauthorID | 262954 | |