• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   Home
  • Avesis
  • Dokümanı Olmayanlar
  • Bildiri
  • View Item
  •   Home
  • Avesis
  • Dokümanı Olmayanlar
  • Bildiri
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

HYBRID SVM AND SVSA METHOD FOR CLASSIFICATION OF REMOTE SENSING IMAGES

Author
Kaya, G. Taskin
Kamasak, M. E.
Ersoy, O. K.
Metadata
Show full item record
Abstract
A linear support vector machine (LSVM) is based on determining an optimum hyperplane that separates the data into two classes with the maximum margin. The LSVM typically has high classification accuracy for linearly separable data. However, for nonlinearly separable data, it usually has poor performance. For this type of data, the Support Vector Selection and Adaptation (SVSA) method was developed, but its classification accuracy is not very high for linearly separable data in comparison to LSVM. In this paper, we present a new classifier that combines the LSVM with the SVSA, to be called the Hybrid SVM and SVSA method (HSVSA), for classification of both linearly and nonlinearly separable data and remote sensing images as well. The experimental results show that the HSVSA has higher classification accuracy than the traditional LSVM, the nonlinear SVM (NSVM) with the radial basis kernel, and the previous SVSA.
URI
http://hdl.handle.net/20.500.12627/93411
https://doi.org/10.1109/igarss.2010.5649062
Collections
  • Bildiri [64839]

Creative Commons Lisansı

İstanbul Üniversitesi Akademik Arşiv Sistemi (ilgili içerikte aksi belirtilmediği sürece) Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 


Hakkımızda
Açık Erişim PolitikasıVeri Giriş Rehberleriİletişim
sherpa/romeo
Dergi Adı/ISSN || Yayıncı

Exact phrase only All keywords Any

BaşlıkbaşlayaniçerenISSN

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypesThis CollectionBy Issue DateAuthorsTitlesSubjectsTypes

My Account

LoginRegister

Creative Commons Lisansı

İstanbul Üniversitesi Akademik Arşiv Sistemi (ilgili içerikte aksi belirtilmediği sürece) Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV