Basit öğe kaydını göster

dc.contributor.authorKaya, G. Taskin
dc.contributor.authorKamasak, M. E.
dc.contributor.authorErsoy, O. K.
dc.date.accessioned2021-03-04T18:15:16Z
dc.date.available2021-03-04T18:15:16Z
dc.identifier.citationKaya G. T. , Ersoy O. K. , Kamasak M. E. , "HYBRID SVM AND SVSA METHOD FOR CLASSIFICATION OF REMOTE SENSING IMAGES", 30th IEEE International Geoscience and Remote Sensing Symposium (IGARSS) on Remote Sensing - Global Vision for Local Action, Hawaii, Amerika Birleşik Devletleri, 25 - 30 Haziran 2010, ss.2828-2831
dc.identifier.othervv_1032021
dc.identifier.otherav_89c1ee78-705b-4d05-9ab1-509221f8641a
dc.identifier.urihttp://hdl.handle.net/20.500.12627/93411
dc.identifier.urihttps://doi.org/10.1109/igarss.2010.5649062
dc.description.abstractA linear support vector machine (LSVM) is based on determining an optimum hyperplane that separates the data into two classes with the maximum margin. The LSVM typically has high classification accuracy for linearly separable data. However, for nonlinearly separable data, it usually has poor performance. For this type of data, the Support Vector Selection and Adaptation (SVSA) method was developed, but its classification accuracy is not very high for linearly separable data in comparison to LSVM. In this paper, we present a new classifier that combines the LSVM with the SVSA, to be called the Hybrid SVM and SVSA method (HSVSA), for classification of both linearly and nonlinearly separable data and remote sensing images as well. The experimental results show that the HSVSA has higher classification accuracy than the traditional LSVM, the nonlinear SVM (NSVM) with the radial basis kernel, and the previous SVSA.
dc.language.isoeng
dc.subjectMühendislik ve Teknoloji
dc.subjectJEOLOJİ
dc.subjectJeoloji Mühendisliği
dc.subjectUZAKTAN ALGILAMA
dc.subjectTemel Bilimler (SCI)
dc.subjectYerbilimleri
dc.subjectYER BİLİMİ, MULTİDİSİPLİNER
dc.titleHYBRID SVM AND SVSA METHOD FOR CLASSIFICATION OF REMOTE SENSING IMAGES
dc.typeBildiri
dc.contributor.departmentİstanbul Teknik Üniversitesi , ,
dc.contributor.firstauthorID136785


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster