Basit öğe kaydını göster

dc.contributor.authorNese, Huden
dc.contributor.authorDemiralp, Tamer
dc.contributor.authorHari, Emre
dc.contributor.authorAy, Ulas
dc.contributor.authorBayram, Ali
dc.date.accessioned2021-03-04T19:08:44Z
dc.date.available2021-03-04T19:08:44Z
dc.date.issued2020
dc.identifier.citationHari E., Ay U., Nese H., Bayram A., Demiralp T., "MAGNETIC RESONANCE IMAGING BASED FUNCTIONAL CONNECTIVITY METHODS", JOURNAL OF ISTANBUL FACULTY OF MEDICINE-ISTANBUL TIP FAKULTESI DERGISI, cilt.83, ss.71-80, 2020
dc.identifier.othervv_1032021
dc.identifier.otherav_8e516174-ba33-4526-8201-26ca8498fd02
dc.identifier.urihttp://hdl.handle.net/20.500.12627/96159
dc.identifier.urihttps://doi.org/10.26650/iuitfd.2019.0072
dc.description.abstractFunctional connectivity analyses based on functional Magnetic Resonance Imaging (fMRI) data have gained an important place in brain research. There are alternative functional connectivity estimation approaches, which, despite the similarity of the overall results, produce significant differences in their details. For effective use of the functional connectivity metrics, the strengths and weaknesses of various approaches need to be well understood. While the seed-based functional connectivity analyses based on the selection of those anatomic regions of interest derived from the literature represent a stronger approach for hypothesis testing, the independent component analysis (ICA) as a data-driven approach provides an unbiased evaluation possibility for exploratory data analysis. Another difference between the methods is related to group analyses in terms of registering individual brains to a common template or implementing anatomical definitions on the spatial coordinates of individual brains. While the latter increases the success in studies on pathologies that lead to large-scale brain deformations, the former may be advantageous for deriving normative results from large data sets. Lastly, volume vs surface-based approaches for the definition of cortical anatomy in the individual space also significantly affect the results of functional connectivity analyses. In this review, functional connectivity estimation methods will be compared by evaluating them using these three perspectives.
dc.language.isoeng
dc.subjectTemel Tıp Bilimleri
dc.subjectTIP, GENEL & İÇECEK
dc.subjectKlinik Tıp
dc.subjectKlinik Tıp (MED)
dc.subjectTıp
dc.subjectSağlık Bilimleri
dc.titleMAGNETIC RESONANCE IMAGING BASED FUNCTIONAL CONNECTIVITY METHODS
dc.typeMakale
dc.relation.journalJOURNAL OF ISTANBUL FACULTY OF MEDICINE-ISTANBUL TIP FAKULTESI DERGISI
dc.contributor.departmentİstanbul Üniversitesi , ,
dc.identifier.volume83
dc.identifier.issue1
dc.identifier.startpage71
dc.identifier.endpage80
dc.contributor.firstauthorID272576


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster